
Contextualization: Providing One-Click Virtual Clusters

Katarzyna Keahey
University of Chicago
keahey@mcs.anl.gov

Tim Freeman
University of Chicago
tfreeman@mcs.anl.gov

Abstract

As virtual appliances become more prevalent, we
encounter the need to stop manually adapting them to
their deployment context each time they are deployed.
We examine appliance contextualization needs and
present architecture for secure, consistent, and
dynamic contextualization, in particular for groups of
appliances that must work together in a shared
security context. This architecture allows for
programmatic cluster creation and use, as well as
mitigating potential errors and unnecessary charges
during setup time. For portability across many
deployment mechanisms, we introduce the concept of a
standalone context broker. We describe the current
implementation of the entire architecture using the
Virtual Workspaces toolkit, showing real-life examples
of dynamically contextualized Grid clusters.

1. Introduction

Providers of compute cycles in the cloud, such as
Amazon EC2 [1] or the Science Clouds [2], enable
users to acquire on-demand compute resources, usually
in the form of virtual machines (VMs). To be useful,
the acquired group of VMs typically still has to be
configured into a working cluster: common
applications such as shared file system or a batch
scheduler have to be configured to reflect the group of
machines belonging to the cluster domain. In other
words, the cluster needs to establish its context: share
the networking information assigned to individual
VMs when they are deployed (such as IP addresses and
hostnames) an the security information that is often
specific to a particular deployment. In short, for the
virtual cluster to be useful, a configuration phase needs
to be completed at deployment time.

This configuration phase can happen in two ways:
(1) we can deploy an image configured with a basic
environment, then install and configure the context-
sensitive applications at deployment time [3, 4], or (2)
deploy fully configured images and adjust the
configuration of context-sensitive applications after
deployment. The first option often results in a long
deployment time for nontrivial systems: the process of

configuring a real-life scientific cluster may take many
hours [5]. The second option, while potentially faster,
typically requires knowledge of the applications that
have been installed on the VM and is thus carried out
manually. Both options have the potential to make the
process of VM deployment long. We argue that by
coordinating the process of appliance preparation and
appliance deployment we can provide a generic,
lightweight, and automated mechanism that will
quickly deploy fully configured images and adapt them
to their deployment context.
In [6] we introduced the term contextualization to
describe such a process for single VMs. In this paper,
we provide a more comprehensive discussion of what
it takes to build and contextualize virtual clusters and
other complex constructs. We present a detailed
description of the architecture, discuss the security
aspects of context creation, and describe how context
information can be brokered between multiple VMs.
We analyze two appliance deployment
implementations: one provided by the Amazon EC2
service [7], the other by the Nimbus Toolkit [8], and
describe how the Nimbus Context Broker service can
work with each to deploy one-click virtual clusters of
varying complexity. We also illustrate with examples
how contextualization is used in practice.
This paper is organized as follows. In Section 2 we
discuss the roles and responsibilities of appliance
providers and appliance deployers. Section 3 describes
a context brokering architecture, compares the features
of two existing deployer implementations, and
describes how they can work with the Nimbus Context
Broker. Section 4 gives examples. Sections 5 and 6
present related and future work and Section 7
summarizes the findings.

2. Roles and Responsibilities

Virtual organizations (VOs) [9] bring together

scientists collaborating to solve problems that require
a common and consistent set of environments
customized to satisfy the needs of a VO-specific
applications. These needs can range from providing a
software stack capable of supporting VO applications

to defining levels of isolation and security associated
with the work in those environments. In order to serve
the needs of its community, a VO must find ways of
expressing the required environments and mapping
those environments onto resources.

This goal is hard to achieve in today’s grids because
the environment configuration is almost entirely in the
hands of resource providers who configure and
maintain environments trying to find a compromise
between the needs of as many VOs as possible. This
strategy often fails because reconciling the needs of
different VOs is time-consuming at best and
impossible at worst: different VOs require environment
updates in different timeframes and sharing
relationships are often ad hoc, complex and ill defined.

The past few years have seen the emergence of
virtual appliances [10] that define an environment as
an abstraction independent of its deployment. In doing
so, appliances decouple the notion of environment
configuration and maintenance from the notion of their
assignment to resources. Such appliances no longer
need to be maintained by the resource providers; they
can be maintained by the communities that use them,
and then mapped onto resources. This rethinking of the
division of labor between the providers and consumers
of resources adds a new role to the process, that of an
appliance provider, and new flexibility (provided by
new software) that allows us to explicitly provision
environments on available resources.

Figure 1 shows the interdependencies between the
different roles:
• Appliance providers configure environments, take

responsibility for maintaining them (e.g. applying
security updates), and guarantee their consistency
and freshness. In doing so, the appliance providers
may be assisted by appliance management tools
[11][] and provide mechanisms for convenient
updates, versioning, verification, and so forth.

• Resource providers provide resources with limited
configuration requirements designed to support
appliances but no longer to provide end-user
environments for multiple communities. The same
appliance may be moved seamlessly between
open, proprietary, and leased platforms to cope
with peak demand.

• Appliance deployers coordinate the mapping of
appliances onto available resource platforms and
information exchange between groups of
appliances to enable them to share information and
sharing relationships that constitute the context of
their deployment.

In a Grid environment, a logical choice for the
appliance provider is a VO (or representatives
designated by the VO), since VOs are typically
associated with a set of well-defined compute

environment required by a community. To be effective,
the VOs will need to develop infrastructure or have
available tools to provide and maintain appliances.
Introducing the concept of a virtual appliance does not
necessarily save work; it simply puts work in the hands
of the party that is most qualified and motivated to do
it.

Figure 1: Roles and responsibilities: appliance
deployers map appliances prepared by appliance
providers onto resources.

This paper describes the challenges and solutions
facing the appliance deployer. These can be seen as the
interplay of two layers: (1) mapping appliances onto
resources and (2) configuring them to represent
functional units aware of the surrounding context. We
addressed (1) in our research in [12, 13]. We now
focus on (2): the contextualization process.

3. The Contextualization Process

Each appliance is deployed in a specific deployment
context that may be defined by a Grid, a site, other
appliances (e.g., when the appliance is part of a
“virtual cluster” [14]), or all of the above. Since
appliances are deployed dynamically, each appliance
deployment instance is potentially associated with a
different context. For example, the appliance’s IP
address and hostname may be new or reassigned and
deployment-specific security data generated.
Therefore, each time the appliance is deployed, it must
be able to integrate information about its current
deployment context in order to function within that
context. We call this process of adapting an appliance
to its deployment context contextualization.

 In [6], we defined an appliance as an environment
capable of being contextualized (a prerequisite for
dynamic deployment), that is, an environment that
defines the required context information

(contextualization template) and can integrate this
information into the appliance so that the appliance
works in its deployment context. We call the agent
acting to integrate the contextualization information
into an appliance the contextualization agent. We also
described a simple contextualization mechanism that
allowed us to configure appliances as long as all the
context information was available. This was achieved
as a collaboration between the appliance provider and
appliance deployer and worked as follows. Each time
an appliance provider put a new application into the
appliance, they would define what context-dependent
information was required to make the application work
(e.g., a Grid service might require a host certificate).
The appliance provider would then specify the required
information in the appliance template and write a script
(contextualization agent) capable of integrating the
context information into the appliance (e.g., by
modifying configuration files for an application). The
appliance deployer would provide the information
described in the contextualization template at boot
time, and on boot the contextualization scripts/agents
would integrate the information into the appliance.

This method assumed that all of the context
information was available on boot, that the context did
not change during the appliance’s deployment, and that
the deployer of an appliance was the same entity that
coordinated the context exchange between appliances
and the larger context. However, these assumptions are
not necessarily true: if we simultaneously deploy
several appliances depending on each other for context
information, not all of the context information will be
available on boot (i.e., each appliance needs to provide
as well as consume context information). Also, in
practice the appliance deployer (e.g., the Amazon’s
EC2 service) may not be privy to, say, VO-specific
authorization policy information required by the
appliance. We therefore extended our model to account
for those situations. We still assume that context
integration will occur at boot time (i.e., we provide no
mechanisms for recontextualization).

3.1. Architecture

The process of contextualization depends on the
collaboration of three parties, each potentially in a
distinct trust domain, and each potentially providing
information in a different idiom. Figure 2 shows the
interactions between the appliance and the three
components. The appliance provider configures the
appliance, providing the disk image and corresponding
contextualization template that describes what
information is required or contributed by the appliance
toward the establishment of the context (1). The
appliance deployer start sup the appliance and provides

some generic appliance information (2). The context
broker coordinates the exchange of application-specific
contextualization information (3).

Figure 2: Relationship between appliance provider,
appliance deployer, and context broker.

A context broker manages objects describing
information associated with a specific context. A
context object captures context information relevant to
a specific virtual construct (a virtual cluster,
collaboration, or Grid), serves as an exchange board
for that information, and defines the security and trust
for that context. Context information may be provided
by the client (e.g., an access control list defining
individuals who can access a virtual cluster), by the
appliance deployer, by any appliance that exist within
the context and contribute to it, or from other sources.
Since we currently assume that all the context
information will become available within a short time
after the appliance boots, we require that a context
object eventually reach a stable state (when all the
expected information has been provided). At that point
the information is distributed to the appliances.

The appliance providers, deployers, and context
distributors interact as follows (see Figure 2):
1) The appliance gets configured by the appliance

provider. As part of the configuration, each
application participating in the appliance provides
a script that integrates context information into the
appliance at boot time and a description of
contextualization requirements to be put in the
contextualization template. In addition to this
application-specific context information, each
appliance requires generic context information
(see below). Both the script and the template are
provided as part of appliance packaging process.

2) When the appliance is deployed by the appliance
deployer, it is associated with a specific context
broker. The deployer delivers to the appliance
(either via push or pull, see Section 3.2) the
generic context information including a way to
contact the context broker. In order to obtain more
context information, the appliance will contact the
context broker.

3) After the appliance is booted, the contextualization
agents first gather all the context information
provided by the appliance. They then contact the
context broker and deposit the information in the
appliance’s context. After the context reaches a
stable state, they collect the context information
the appliance requires.

The generic context information delivered by the
deployer is as follows:

a) Network id of the appliance (IP address/hostname)

b) Address of the context broker

c) Context identifier

d) A set of credentials that will allow the appliance to
prove its identity to the context service and verify
the identity of the context service.

Note that b–d are required only if a context broker is
used (simple appliances, such as base images, may not
need a context broker at all). In addition, if the context
broker shares the trust domain with the deployer and
the appliance, the security information is not needed.

The model described above illustrates the inter-
relationships among the actors in the contextualization
process and defines the protocols they need to agree
on. The contextualization agent needs to be able to
consume and interpret the context information
provided by the deployer. The agent also may need to
be able to contact the context service and provide
required context information itself. While a variety of
implementations can be used in all of these cases,
standards in this area would greatly facilitate the
adoption of the technology.

3.2. Implementation

We now discuss how the architecture described
above has been implemented in two systems we are
familiar with: the Amazon Elastic Compute Cloud
(EC2) [7] and the workspace service [5].

3.2.1. Delivery of Generic Context Information.
Both EC2 and the workspace service leverage existing
contextualization mechanisms to provide basic context
information to the VM. Specifically, they leverage the
standard DHCP broadcast call (a part of typical boot
sequence) to provide an IP address. In EC2’s case two
addresses are assigned to the same NIC: a private IP
address and a public IP address. The DHCP request
returns the private IP; traffic directed to the public IP is
eventually redirected to the NIC associated with the
private IP [15]. The workspace service delivers all IP

address information via a DHCP delivery tool
described in [6] or via the site’s DHCP service.

The remaining generic context information can be
delivered to EC2 instances as follows. For each VM,
EC2 creates an “instance metadata” structure on startup
for a group of VMs deployed at the same time – a
“launch group.” Among others, the metadata contains a
“user-data” field, allowing the user to provide
unstructured data (at most 16KB) to be shared among
all the members of the launch group. The information
can be provided by an external client via a secure
HTTPS connection guaranteeing the privacy of the
data. The VM can read this data via an unsecured
HTTP GET call; however, since the assumption is that
the network between the VM and EC2’s data structure
is secure, user data can be used to convey, for example,
a private key or another secret.

The workspace service likewise exposes the means
for a client to provide context information to a group of
workspaces via a private HTTPS channel. The
workspace service conveys this information to the VM
by “image patching” (putting a file with the required
information on the VM disk image). The workspace
service patches the image with a file containing the
generic context information. At boot time, the
contextualization agent reads and interprets the
information in the file.

Of the three discussed delivery methods, leveraging
existing mechanisms (DHCP) would clearly be most
convenient – unfortunately it is not feasible to employ
it for all applications. We chose image patching in our
implementation because it is simple for the
contextualization agent (although not necessarily
simple for the deployer), because it imposes no
practical size constraint, and because it can be used
securely without requiring the network on the
deployer’s side to be trusted. Providing
contextualization information via the network (EC2) is
also simple but it requires a trusted network to share
secrets, which is not always feasible. In addition,
contextualization information may be delivered via
kernel parameters, but this approach may significantly
limit the size of the information that can be delivered.

Since both EC2 and the workspace service provide
a secure delivery channel of unstructured information
(user data and the image patch, respectively), both can
be used to convey the generic context information
including the service URL to the context broker, the
WSRF key identifying the specific context object, and
the security information consisting of the public key
identifying the context broker and a private key
identifying the context object.

3.2.2. Context Broker Implementation. Neither
EC2’s user data nor workspace service image patching

is suitable for the kind of context brokering described
in Section 3.1. First, both methods work one way only
(from client via deployer to the VM): neither allows a
VM to send information back, so that the VM cannot
share its “provides” information. In addition, both are a
deployer-specific context mechanism: they rely on the
assumption that the VM does not need to create a
security context with deployer because it is within the
deployer’s domain and this domain creates conditions
for trusted exchange. In other words, these mechanisms
cannot be used to broker information across different
deployers or where we cannot assume the existence of
a trusted domain.

To overcome these shortcomings, we implemented
a context broker to fulfill those tasks. The context
broker is implemented as a WSRF service that creates
and manages context objects. A context object is
created by a client (e.g., by a deployer to assist with the
creation of virtual cluster or by the end user who wants
several VMs to share a context). On creation, a context
object generates a keypair that is used to root a
trust/security environment for the context: the private
key of this keypair is conveyed to the VM as part of
the generic context information along with the public
key of the context service. The private key identifying
a context can be obtained by the deployer using the
HTTPS protocol. A context broker implements two
operations: (1) “add workspace,” used by a deployer to
register the IP of a deployed VM as well as the
contextualization template corresponding to the VM,
and (2) “add information,” which allows a client to add
information expressed as an XML document to the
context. In addition, a client can also set a flag saying
that there are no more workspaces and no more
information to be added to the context.

The contextualization template is composed of two
sections: provides and requires. The provides section
contains a list of labels that describe the role of the VM
in the context of a specific application (e.g., if a VM is
an NFS server, it will contain the “nfsserver” label in
the provides section). The requires section contains a
list of labels that describe what information is required
to contextualize the VM (e.g., if a VM is an NFS
client, it will contain the “nfsclient” label in the
requires section). Labels are arbitrary, but they must be
such that the contextualization scripts can interpret
them.

On deployment, a VM is passed the generic context
information described in Section 3.1. When the VM
boots, the context agent mutually authenticates with
the context broker using the generic context
information and provides its identity (VM identity is
composed of three typed objects: hostname, IP address,
and public host key). The context broker matches this
information to the VM’s contextualization template

and “fills in” the templates by sorting the provides
information into the requires fields of
contextualization templates of each VM participating
in the context. After all the context identity information
has been received and sorted, the context broker
releases the templates with filled-in information to the
waiting contextualization agents. When the context
broker marks a response to a specific context agent as
“complete,” that context agent invokes the
applications-specific contextualization scripts on the
VM, which integrate the necessary information into
application configuration.

Note that our implementation assumes that the VM
authenticates as a “member of context” only (rather
than an individual entity) and that the members of
context are trusted between themselves (i.e., they are
trusted to identify themselves within the context).

4. Contextualization Examples

We implemented the mechanisms described above
and released them in 1.3.3 release of our software. We
successfully used the context broker both in
conjunction with the Science Clouds workspace
deployment [2] using workspace-specific mechanisms
to convey the generic context information and in
conjunction with Amazon EC2, where we used the
EC2 user-data to convey the generic context
information. The techniques proved effective in
producing “instant virtual clusters” for multiple
applications, including the high energy physics STAR
experiment, which ran on 100 nodes on Amazon EC2.
Below we describe some contextualization examples.

4.1. Network File System (NFS)

Contextualizing NFS enables us to dynamically
deploy a simple cluster with a shared filesystem. We
show here a simple example of contextualizing a
cluster that has two client nodes and one NFS server
node that exports directories. To keep the example
simple, we assume that the network can be trusted for
authentication, that node’s identity is composed of the
IP address only, and that the volumes to export and
mount are embedded in the VM contextualization
scripts.

NFS VMs are all configured in the same way;
contextualization consists of annotating which VM will
play the server role and which will be the clients. For
example, server node context template looks like this
(the client’s template looks similar but with the nfs
labels switched):
<provides>
 <identity />
 <label>nfsserver</label>

</provides>
<requires>
 <role name=”nfsclient”/>
</requires>

During deployment, the identity playing the
“nfsserver” role will be filled in once it is known, for
example, with the IP address of 10.0.0.1. An XML
representation of the node’s provides section in the
context will now look like the following.
<provides>
 <identity><ip>10.0.0.1</ip></identity>
 <label>nfsserver</label>
</provides>

Similarly, the client nodes’ IP addresses (in our
example, 10.0.0.2 and 10.0.0.3) are filled into their
respective templates as they become known.

The information gets sorted and given to each client
node as follows.
<requires>
 <role name=”nfsserver”>10.0.0.1</role>
</requires>

and to the server as follows.
<requires>
 <role name=”nfsclient”>10.0.0.2</role>
 <role name=”nfsclient”>10.0.0.3</role>
</requires>

The scripts on the client nodes take the “nfsserver”
IP address and use it to construct the proper line to add
to the fstab file. The scripts on the head node take each
“nfsclient” IP address and append an authorization line
to the exports policy file. Then, the server process and
client mounts (depending on the role) are started. Since
we do not assume that the NFS server will be online
when the client node’s contextualization retrieval
completes for each mount requirement, the NFS client
nodes try to mount the volume in a loop that checks
whether the mount was successful.

4.2. STAR Cluster

To support STAR [16] workloads, we created a
virtual cluster using a Scientific Linux 4.4 base image,
VDT [17] packages, and Torque [18]. The OSG 0.6.0
CE installation was used for the head node template
image, and the OSG 0.6.0 wn-client installation was
used for the worker node template image. The virtual
head node runs a Globus GRAM2 job gateway to a
localhost Torque server, a GridFTP server [19], and an
NFS server. The worker nodes run Torque MOM
processes (processes that sit on each worker node to
run jobs) and mount NFS directories from the head
node (OSG's typical $HOME, $APP, and $DATA).
The head node has two network interfaces, one for its
Internet addressable processes (GRAM, GridFTP) and
one for a private network. The worker nodes have one

interface each, all on the private network. This is a
typical Grid cluster gateway + NAT setup.

The contextualization demands in this example are
more complex. Since the headnode has both a public
and private IP address, we have to be careful that it is
the private address of the cluster headnode that gets
connected to the worker nodes for NFS and Torque.
Also, using Torque requires contextualization features
that are new in this example, namely, full identity
distribution (including SSHd host keys). The
contextualization process is also used to late-configure
GRAM and GridFTP to handle identity configuration
(they both need to be configured with the proper public
facing fully qualified domain name).

The headnode’s two network identities are both
reflected in the provides section (as shown below) in
order to introduce tags for each. The eth1 tag is given
to the private interface, and this is indicated in the
“torqueserver” and “nfsserver” provided roles. Hence,
anything requiring a match for these roles will get the
eth1 network identity in response.
<provides>
 <identity>
 <interface>eth0</interface>
 </identity>
 <identity>
 <interface>eth1</interface>
 </identity>
 <role interface="eth1">
 torqueserver</role>
 <role interface="eth1">nfsserver</role>
</provides>
<requires>
 <identity />
 <role name="torqueclient"
 hostname="true" pubkey="true" />
 <role name="nfsclient" />
</requires>

In the requires section, the “torqueclient” annotation
indicates that more than the IP address is necessary.
The hostname is required as well as the SSHd host key
because SSHd host-based authentication is used with
Torque and GRAM2 to allow jobs to run. This sets up
free SSH access from node to node if the source and
target system account are the same. Again, the worker
node annotations are similar, with the role labels
reversed (but no dual networking).

On boot, each worker node generates an SSHd host
key, and the agent reports this to the contextualization
service (using secure channel) with the rest of identity
information.

After the contextualization information has been
retrieved, SSHd on all nodes is configured by
populating the node’s global “known_hosts” file as
well as the “hosts.equiv” file (we implement a “many-
to-many” approach to handle nonserial workloads
where there will be intercommunication among the

nodes). Further, the /etc/hosts file on each node is
populated with all known IP address and hostnames.
This avoids any DNS problems if the site has not
configured things correctly, especially for reverse
DNS, which typically affects network security
software. On the worker nodes, the Torque “server”
file is populated with the head node hostname, and
NFS is configured as in the previous example. On the
headnode, Torque's “nodes” file is populated with all
of the authorized MOM hostnames, Torque’s “server”
file is populated with the head node hostname
(configuring itself as the master), and NFS is
configured as in the example before.

GRAM and GridFTP require the public fully
qualified domain name of the intended contact address
in order to work correctly with GSI. We found that on
multi-NIC nodes this was not trivially deduced in a
startup script. Thus, the contextualization engine helps
identify the proper hostname for configuring these
components. On EC2, the public address is not even an
actual on-board network interface (each EC2 VM is
behind a NAT and the public address is known only
via EC2 instance metadata), and so this was especially
useful in that case.

5. Related Work

One approach to appliance deployment is to only
partially rely on preconfigured images. In this
approach, an appliance is deployed by deploying an
image with as much of a base configuration as possible
(“golden image”) and installing applications on the fly.
This approach has been used by VMPlant [3] as well as
[4]. While for this only generic contextualization is
sufficient, it makes the appliance deployment
potentially lengthy.

The term virtual appliance was introduced by
Sapuntzakis and Lam [10], and their work describes
the first attempts at defining contextualization
information as well as explaining the requirements for
appliance management. We build on this work,
generalizing the method and enabling the use of
generic tools and protocols for configuration
management.

Configuration management tools such as LCFG
[20], Quattor [21], and Bcfg2 [22] are somewhat
similar to appliance creation and deployment.
However, they rely on traditional configuration
techniques and do not (as of now) cleanly separate the
process of appliance creation and contextualization.
Much work has also been done in the industry by
companies that explicitly manage appliances (e.g.,
rPath [23]); we collaborate with those efforts as
builders of deployer-side software. In particular, the

Open Virtualization Framework [24] defines high-level
concepts and best practices similar to the work
described here; our approach is more detailed and
serves the specific needs of our community.

6. Future Directions

While our current approach allows us to solve
current problems (namely, provide a cluster on the fly
for nontrivial applications), it needs to be refined to
provide more features. While our implementation
currently operates on identity information we see
increasing demand for the exchange of application-
specific data that could be brokered as “blobs” to be
interpreted by contextualization agents; we are
currently generalizing the techniques described here to
accommodate this requirement. Also, virtual clusters
are only one type of context; in general, virtual
constructs could span the range from individual VMs
through clusters to virtual Grids that could potentially
benefit from a hierarchical organization.

Further, our methods to date do not address the
critical issue of recontextualization: redistributing the
context based on dynamically changing context
information. The ability to do so would allow us to add
VMs to a context on the fly, for example, by adding
new nodes to an MPI computation, or account for
changes due to, for example, appliance migration. The
ability to make those changes, however, will require
tighter collaboration with OS-level tools.

7. Summary

In this paper we described a new technique, called
contextualization, enabling the dynamic creation of
functioning virtual constructs aware of their context.
We discussed two existing implementations providing
generic contextualization information, their respective
assumptions and capabilities, and gave examples ofow
they can be used in conjunction with a context broker
to deploy virtual clusters. Our purpose in this paper
was to describe a general solution and a process that
can be used with any deployer and any appliance
provider that fulfill the specified conditions of secure
transfer of information. Based on this process, we
highlighted the need for standards on the deployers and
appliance provider’s side.

Making contextualization an accepted technology
will require the collaboration of many branches of
technology. Besides the obvious ones of appliance
configuration and deployment, better and more flexible
methods of context information delivery to appliances
will need to be developed to allow for
recontextualization. Further, applications will also need

to develop the awareness of the potential of
contextualization in order to leverage it.

Acknowledgements

This work was supported by NSF CSR award #527448
and, in part, by the MCS Division subprogram of the
Office of Advanced Scientific Computing Research,

SciDAC Program, Office of Science, U.S. Department
of Energy, under Contract DE-AC02-06CH11357.

References

1. Amazon Elastic Compute Cloud (Amazon

EC2): http://www.amazon.com/ec2.
2. Science Clouds:

http://workspace.globus.org/clouds/.
3. Krsul, I., A. Ganguly, J. Zhang, J. Fortes, and

R. Figueiredo. VMPlants: Providing and
Managing Virtual Machine Execution
Environments for Grid Computing. in SC04.
2004. Pittsburgh, PA.

4. Nishimura, H., N. Maruyama, and S.
Matsuoka, Virtual Clusers on the Fly -- Fast,
Scalable and Flexible Installation. CCGrid,
2007.

5. Keahey, K., I. Foster, T. Freeman, and X.
Zhang, Virtual Workspaces: Achieving
Quality of Service and Quality of Life in the
Grid. Scientific Programming Journal, 2005.

6. Bradshaw, R., N. Desai, T. Freeman, and K.
Keahey. A Scalable Approach to Deploying
and Managing Virtual Appliances. in
TeraGrid 2007 Conference. 2007. Madison,
WI.

7. Amazon Elastic Compute Cloud (EC2):
www.amazon.com/ec2.

8. Virtual Workspaces:
http://workspace.globus.org.

9. Foster, I., C. Kesselman, and S. Tuecke, The
Anatomy of the Grid: Enabling Scalable
Virtual Organizations. International Journal
of Supercomputer Applications, 2001. 15(3):
p. 200-222.

10. Sapuntzakis, C. and M.S. Lam. Virtual
Appliance in the Collective: A Road to
Hassle-free Computing. in 9th Workshop on
Hot Topics in Operating Systems. 2003.

11. rBuilder Online:
http://www.rpath.com/rbuilder/.

12. Freeman, T., K. Keahey, I. Foster, A. Rana,
B. Sotomayor, and F. Wuerthwein, Division
of Labor: Tools for Growth and Scalability of
the Grids. ICSOC 2006, 2006.

13. Freeman, T. and K. Keahey, Flying Low:
Simple Leases with Workspace Pilot. EuroPar
2008, 2008.

14. Freeman, T., K. Keahey, B. Sotomayor, X.
Zhang, I. Foster, and D. Scheftner, Virtual
Clusters for Grid Communities. CCGrid,
2006.

15. Amazon Elastic Compute Cloud. Developer
Guide. API Version 2008-02-01, in available
from www.amazon.com/ec2.

16. The STAR Experiment. 2007:
www.star.bnl.gov.

17. Virtual Data Toolkit: http://www.lsc-
group.phys.uwm.edu/vdt/documentation.html.

18. Torque:
http://www.clusterresources.com/pages/produ
cts/torque-resource-manager.php.

19. Allcock, W., GridFTP: Protocol Extensions
to FTP for the Grid. 2003, Global Grid
Forum.

20. Anderson, P. and A. Scobie. Large Scale
Linux Configuration with LCFG. in 4th
Annual Linux Showcase and Conference.
2000.

21. Quattor: http://cern.ch/quattor.
22. Desai, N., A. Lusk, R. Bradshaw, and R.

Evrard. BCFG: A Configuration Management
Tool for Heterogeneous Environments. in
IEEE International Conference on Cluster
Computing (CLUSTER'03). 2003.

23. rPath: www.rPath.com.
24. The Open Virtual Machine Format

(whitepaper for OVF specification version
0.9).

