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Abstract 

As virtual appliances become more prevalent, we 
encounter the need to stop manually adapting them to 
their deployment context each time they are deployed. 
We examine appliance contextualization needs and 
present architecture for secure, consistent, and 
dynamic contextualization, in particular for groups of 
appliances that must work together in a shared 
security context. This architecture allows for 
programmatic cluster creation and use, as well as 
mitigating potential errors and unnecessary charges 
during setup time. For portability across many 
deployment mechanisms, we introduce the concept of a 
standalone context broker. We describe the current 
implementation of the entire architecture using the 
Virtual Workspaces toolkit, showing real-life examples 
of dynamically contextualized Grid clusters. 
 
1. Introduction 
 

Providers of compute cycles in the cloud, such as 
Amazon EC2 [1] or the Science Clouds [2], enable 
users to acquire on-demand compute resources, usually 
in the form of virtual machines (VMs). To be useful, 
the acquired group of VMs typically still has to be 
configured into a working cluster: common 
applications such as shared file system or a batch 
scheduler have to be configured to reflect the group of 
machines belonging to the cluster domain. In other 
words, the cluster needs to establish its context: share 
the networking information assigned to individual 
VMs when they are deployed (such as IP addresses and 
hostnames) an the security information that is often 
specific to a particular deployment. In short, for the 
virtual cluster to be useful, a configuration phase needs 
to be completed at deployment time.  

This configuration phase can happen in two ways: 
(1) we can deploy an image configured with a basic 
environment, then install and configure the context-
sensitive applications at deployment time [3, 4], or (2) 
deploy fully configured images and adjust the 
configuration of context-sensitive applications after 
deployment. The first option often results in a long 
deployment time for nontrivial systems: the process of 

configuring a real-life scientific cluster may take many 
hours [5]. The second option, while potentially faster, 
typically requires knowledge of the applications that 
have been installed on the VM and is thus carried out 
manually. Both options have the potential to make the 
process of VM deployment long. We argue that by 
coordinating the process of appliance preparation and 
appliance deployment we can provide a generic, 
lightweight, and automated mechanism that will 
quickly deploy fully configured images and adapt them 
to their deployment context.  
In [6] we introduced the term contextualization to 
describe such a process for single VMs. In this paper, 
we provide a more comprehensive discussion of what 
it takes to build and contextualize virtual clusters and 
other complex constructs. We present a detailed 
description of the architecture, discuss the security 
aspects of context creation, and describe how context 
information can be brokered between multiple VMs. 
We analyze two appliance deployment 
implementations: one provided by the Amazon EC2 
service [7], the other by the Nimbus Toolkit [8], and 
describe how the Nimbus Context Broker service can 
work with each to deploy one-click virtual clusters of 
varying complexity. We also illustrate with examples 
how contextualization is used in practice.  
This paper is organized as follows. In Section 2 we 
discuss the roles and responsibilities of appliance 
providers and appliance deployers. Section 3 describes 
a context brokering architecture, compares the features 
of two existing deployer implementations, and 
describes how they can work with the Nimbus Context 
Broker. Section 4 gives examples. Sections 5 and 6 
present related and future work and Section 7 
summarizes the findings. 
 
2. Roles and Responsibilities 

 
Virtual organizations (VOs) [9] bring together 

scientists collaborating to solve problems that require  
a common and consistent set of environments 
customized to satisfy the needs of a VO-specific 
applications. These needs can range from providing a 
software stack capable of supporting VO applications 



to defining levels of isolation and security associated 
with the work in those environments. In order to serve 
the needs of its community, a VO must find ways of 
expressing the required environments  and mapping 
those environments onto resources. 

This goal is hard to achieve in today’s grids because 
the environment configuration is almost entirely in the 
hands of resource providers who configure and 
maintain environments trying to find a compromise 
between the needs of as many VOs as possible. This 
strategy often fails because reconciling the needs of 
different VOs is time-consuming at best and 
impossible at worst: different VOs require environment 
updates in different timeframes and sharing 
relationships are often ad hoc, complex and ill defined.  

The past few years have seen the emergence of 
virtual appliances [10] that define an environment as 
an abstraction independent of its deployment. In doing 
so, appliances decouple the notion of environment 
configuration and maintenance from the notion of their 
assignment to resources. Such appliances no longer 
need to be maintained by the resource providers; they 
can be maintained by the communities that use them, 
and then mapped onto resources. This rethinking of the 
division of labor between the providers and consumers 
of resources adds a new role to the process, that of an 
appliance provider, and new flexibility (provided by 
new software) that allows us to explicitly provision 
environments on available resources.  

Figure 1 shows the interdependencies between the 
different roles: 
• Appliance providers configure environments, take 

responsibility for maintaining them (e.g. applying 
security updates), and guarantee their consistency 
and freshness. In doing so, the appliance providers 
may be assisted by appliance management tools 
[11][] and provide mechanisms for convenient 
updates, versioning, verification, and so forth.  

• Resource providers provide resources with limited 
configuration requirements designed to support 
appliances but no longer to provide end-user 
environments for multiple communities. The same 
appliance may be moved seamlessly between 
open, proprietary, and leased platforms to cope 
with peak demand.  

• Appliance deployers coordinate the mapping of 
appliances onto available resource platforms and  
information exchange between groups of 
appliances to enable them to share information and 
sharing relationships that constitute the context of 
their deployment.  

In a Grid environment, a logical choice for the 
appliance provider is a VO (or representatives 
designated by the VO), since VOs are typically 
associated with a set of well-defined compute 

environment required by a community. To be effective, 
the VOs will need to develop infrastructure or have 
available tools to provide and maintain appliances. 
Introducing the concept of a virtual appliance does not 
necessarily save work; it simply puts work in the hands 
of the party that is most qualified and motivated to do 
it.  

 

 
Figure 1: Roles and responsibilities: appliance 
deployers map appliances prepared by appliance 
providers onto resources. 

This paper describes the challenges and solutions 
facing the appliance deployer. These can be seen as the 
interplay of two layers: (1) mapping appliances onto 
resources and (2) configuring them to represent 
functional units aware of the surrounding context. We 
addressed (1) in our research in [12, 13]. We now 
focus on (2): the contextualization process. 
 
3. The Contextualization Process 
 

Each appliance is deployed in a specific deployment 
context that may be defined by a Grid, a site, other 
appliances (e.g., when the appliance is part of a 
“virtual cluster” [14]), or all of the above. Since 
appliances are deployed dynamically, each appliance 
deployment instance is potentially associated with a 
different context. For example, the appliance’s IP 
address and hostname may be new or reassigned and  
deployment-specific security data generated. 
Therefore, each time the appliance is deployed, it must 
be able to integrate information about its current 
deployment context in order to function within that 
context. We call this process of adapting an appliance 
to its deployment context contextualization. 

 In [6], we defined an appliance as an environment 
capable of being contextualized (a prerequisite for 
dynamic deployment), that is, an environment that 
defines the required context information 



(contextualization template) and  can integrate this 
information into the appliance so that the appliance 
works in its deployment context. We call the agent 
acting to integrate the contextualization information 
into an appliance the contextualization agent. We also 
described a simple contextualization mechanism that 
allowed us to configure appliances as long as all the 
context information was available. This was achieved 
as a collaboration between the appliance provider and 
appliance deployer and worked as follows. Each time 
an appliance provider put a new application into the 
appliance, they would define what context-dependent 
information was required to make the application work 
(e.g., a Grid service might require a host certificate). 
The appliance provider would then specify the required 
information in the appliance template and write a script 
(contextualization agent) capable of integrating the 
context information into the appliance (e.g., by 
modifying configuration files for an application). The 
appliance deployer would provide the information 
described in the contextualization template at boot 
time, and on boot the contextualization scripts/agents 
would integrate the information into the appliance.  

This method assumed that all of the context 
information was available on boot, that the context did 
not change during the appliance’s deployment, and that 
the deployer of an appliance was the same entity that 
coordinated the context exchange between appliances 
and the larger context. However, these assumptions are 
not necessarily true: if we simultaneously deploy 
several appliances depending on each other for context 
information, not all of the context information will be 
available on boot (i.e., each appliance needs to provide 
as well as consume context information). Also, in 
practice the appliance deployer (e.g., the Amazon’s 
EC2 service) may not be privy to, say, VO-specific 
authorization policy information required by the 
appliance. We therefore extended our model to account 
for those situations. We still assume that context 
integration will occur at boot time (i.e., we provide no 
mechanisms for recontextualization). 
 
3.1. Architecture 

The process of contextualization depends on the 
collaboration of three parties, each potentially in a 
distinct trust domain, and each potentially providing 
information in a different idiom. Figure 2 shows the 
interactions between the appliance and the three 
components. The appliance provider configures the 
appliance, providing the disk image and corresponding 
contextualization template that describes what 
information is required or contributed by the appliance 
toward the establishment of the context (1). The 
appliance deployer start sup the appliance and provides 

some generic appliance information (2). The context 
broker coordinates the exchange of application-specific 
contextualization information (3). 

 
Figure 2: Relationship between appliance provider, 
appliance deployer, and context broker. 

A context broker manages objects describing 
information associated with a specific context. A 
context object captures context information relevant to 
a specific virtual construct (a virtual cluster, 
collaboration, or Grid), serves as an exchange board 
for that information, and defines the security and trust 
for that context. Context information may be provided 
by the client (e.g., an access control list defining 
individuals who can access a virtual cluster), by the 
appliance deployer, by any appliance that exist within 
the context and contribute to it, or from other sources. 
Since we currently assume that all the context 
information will become available within a short time 
after the appliance boots, we require that a context 
object eventually reach a stable state (when all the 
expected information has been provided). At that point 
the information is distributed to the appliances.  

The appliance providers, deployers, and context 
distributors interact as follows (see Figure 2): 
1) The appliance gets configured by the appliance 

provider. As part of the configuration, each 
application participating in the appliance provides 
a script that integrates context information into the 
appliance at boot time and a description of 
contextualization requirements to be put in the 
contextualization template. In addition to this 
application-specific context information, each 
appliance requires generic context information 
(see below). Both the script and the template are 
provided as part of appliance packaging process.  

2) When the appliance is deployed by the appliance 
deployer, it is associated with a specific context 
broker. The deployer delivers to the appliance 
(either via push or pull, see Section 3.2) the 
generic context information including a way to 
contact the context broker. In order to obtain more 
context information, the appliance will contact the 
context broker.  



3) After the appliance is booted, the contextualization 
agents first gather all the context information 
provided by the appliance. They then contact the 
context broker and deposit the information in the 
appliance’s context. After the context reaches a 
stable state, they collect the context information 
the appliance requires.  

The generic context information delivered by the 
deployer is as follows: 
 
a) Network id of the appliance (IP address/hostname) 

b) Address of the context broker  

c) Context identifier  

d) A set of credentials that will allow the appliance to 
prove its identity to the context service and verify 
the identity of the context service.  

Note that b–d are required only if a context broker is 
used (simple appliances, such as base images, may not 
need a context broker at all). In addition, if the context 
broker shares the trust domain with the deployer and 
the appliance, the security information is not needed. 

The model described above illustrates the inter-
relationships among the actors in the contextualization 
process and defines the protocols they need to agree 
on. The contextualization agent needs to be able to 
consume and interpret the context information 
provided by the deployer. The agent also may need to 
be able to contact the context service and provide 
required context information itself. While a variety of 
implementations can be used in all of these cases, 
standards in this area would greatly facilitate the 
adoption of the technology. 

 
3.2. Implementation 
 

We now discuss how the architecture described 
above has been implemented in two systems we are 
familiar with: the Amazon Elastic Compute Cloud 
(EC2) [7] and the workspace service [5].  

 
3.2.1. Delivery of Generic Context Information. 
Both EC2 and the workspace service leverage existing 
contextualization mechanisms to provide basic context 
information to the VM. Specifically, they leverage the 
standard DHCP broadcast call (a part of typical boot 
sequence) to provide an IP address. In EC2’s case two 
addresses are assigned to the same NIC: a private IP 
address and a public IP address. The DHCP request 
returns the private IP; traffic directed to the public IP is 
eventually redirected to the NIC associated with the 
private IP [15]. The workspace service delivers all IP 

address information via a DHCP delivery tool 
described in [6] or via the site’s DHCP service. 

The remaining generic context information can be 
delivered to EC2 instances as follows. For each VM, 
EC2 creates an “instance metadata” structure on startup 
for a group of VMs deployed at the same time – a 
“launch group.” Among others, the metadata contains a 
“user-data” field, allowing the user to provide 
unstructured data (at most 16KB) to be shared among 
all the members of the launch group. The information 
can be provided by an external client via a secure 
HTTPS connection guaranteeing the privacy of the 
data. The VM can read this data via an unsecured 
HTTP GET call; however, since the assumption is that 
the network between the VM and EC2’s data structure 
is secure, user data can be used to convey, for example, 
a private key or another secret. 

The workspace service likewise exposes the means 
for a client to provide context information to a group of 
workspaces via a private HTTPS channel. The 
workspace service conveys this information to the VM 
by “image patching” (putting a file with the required 
information on the VM disk image). The workspace 
service patches the image with a file containing the 
generic context information. At boot time, the 
contextualization agent reads and interprets the 
information in the file.  

Of the three discussed delivery methods, leveraging 
existing mechanisms (DHCP) would clearly be most 
convenient – unfortunately it is not feasible to employ 
it for all applications. We chose image patching in our 
implementation because it is simple for the 
contextualization agent (although not necessarily 
simple for the deployer), because it imposes no 
practical size constraint, and because it can be used 
securely without requiring the network on the 
deployer’s side to be trusted. Providing 
contextualization information via the network (EC2) is 
also simple but it requires a trusted network to share 
secrets, which is not always feasible. In addition, 
contextualization information may be delivered via 
kernel parameters, but this approach may significantly 
limit the size of the information that can be delivered. 

Since both EC2 and the workspace service provide 
a secure delivery channel of unstructured information 
(user data and the image patch, respectively), both can 
be used to convey the generic context information 
including the service URL to the context broker, the 
WSRF key identifying the specific context object, and 
the security information consisting of the public key 
identifying the context broker and a private key 
identifying the context object. 

 
3.2.2. Context Broker Implementation. Neither 
EC2’s user data nor workspace service image patching 



is suitable for the kind of context brokering described 
in Section 3.1. First, both methods work one way only 
(from client via deployer to the VM): neither allows a 
VM to send information back, so that the VM cannot 
share its “provides” information. In addition, both are a 
deployer-specific context mechanism: they rely on the 
assumption that the VM does not need to create a 
security context with deployer because it is within the 
deployer’s domain and this domain creates conditions 
for trusted exchange. In other words, these mechanisms 
cannot be used to broker information across different 
deployers or where we cannot assume the existence of 
a trusted domain. 

To overcome these shortcomings, we implemented 
a context broker to fulfill those tasks. The context 
broker is implemented as a WSRF service that creates 
and manages context objects. A context object is 
created by a client (e.g., by a deployer to assist with the 
creation of virtual cluster or by the end user who wants 
several VMs to share a context). On creation, a context 
object generates a keypair that is used to root a 
trust/security environment for the context: the private 
key of this keypair is conveyed to the VM as part of 
the generic context information along with the public 
key of the context service. The private key identifying 
a context can be obtained by the deployer using the 
HTTPS protocol. A context broker implements two 
operations: (1) “add workspace,” used by a deployer to 
register the IP of a deployed VM as well as the 
contextualization template corresponding to the VM, 
and (2) “add information,” which allows a client to add 
information expressed as an XML document to the 
context. In addition, a client  can also set a flag saying 
that there are no more workspaces and no more 
information to be added to the context.  

The contextualization template is composed of two 
sections: provides and requires. The provides section 
contains a list of labels that describe the role of the VM 
in the context of a specific application (e.g., if a VM is 
an NFS server, it will contain the “nfsserver” label in 
the provides section). The requires section contains a 
list of labels that describe what information is required 
to contextualize the VM (e.g., if a VM is an NFS 
client, it will contain the “nfsclient” label in the 
requires section). Labels are arbitrary, but they must be 
such that the contextualization scripts can interpret 
them.  

On deployment, a VM is passed the generic context 
information described in Section 3.1. When the VM 
boots, the context agent mutually authenticates with 
the context broker using the generic context 
information and provides its identity (VM identity is 
composed of three typed objects: hostname, IP address, 
and public host key). The context broker matches this 
information to the VM’s contextualization template 

and “fills in” the templates by sorting the provides 
information into the requires fields of 
contextualization templates of each VM participating 
in the context. After all the context identity information 
has been received and sorted, the context broker 
releases the templates with filled-in information to the 
waiting contextualization agents. When the context 
broker marks a response to a specific context agent as  
“complete,” that context agent invokes the 
applications-specific contextualization scripts on the 
VM, which integrate the necessary information into 
application configuration. 

Note that our implementation assumes that the VM 
authenticates as a “member of context” only (rather 
than an individual entity) and that the members of 
context are trusted between themselves (i.e., they are 
trusted to identify themselves within the context).  

 
4. Contextualization Examples 
 

We implemented the mechanisms described above 
and released them in 1.3.3 release of our software. We 
successfully used the context broker both in 
conjunction with the Science Clouds workspace 
deployment [2] using workspace-specific mechanisms 
to convey the generic context information and in 
conjunction with Amazon EC2, where we used the 
EC2 user-data to convey the generic context 
information. The techniques proved effective in 
producing “instant virtual clusters” for multiple 
applications, including the high energy physics STAR 
experiment, which ran on 100 nodes on Amazon EC2. 
Below we describe some contextualization examples.  

 
4.1. Network File System (NFS) 
 

Contextualizing NFS enables us to dynamically 
deploy a simple cluster with a shared filesystem. We 
show here a simple example of contextualizing a 
cluster that has two client nodes and one NFS server 
node that exports directories. To keep the example 
simple, we assume that the network can be trusted for 
authentication, that node’s identity is composed of the 
IP address only, and that the volumes to export and 
mount are embedded in the VM contextualization 
scripts. 

NFS VMs are all configured in the same way; 
contextualization consists of annotating which VM will 
play the server role and which will be the clients. For 
example, server node context template looks like this 
(the client’s template looks similar but with the nfs 
labels switched): 
<provides> 
  <identity /> 
  <label>nfsserver</label> 



</provides> 
<requires> 
  <role name=”nfsclient”/> 
</requires> 

During deployment, the identity playing the 
“nfsserver” role will be filled in once it is known, for 
example, with the IP address of 10.0.0.1. An XML 
representation of the node’s provides section in the 
context will now look like the following. 
<provides>      
  <identity><ip>10.0.0.1</ip></identity> 
  <label>nfsserver</label> 
</provides> 

Similarly, the client nodes’ IP addresses (in our 
example, 10.0.0.2 and 10.0.0.3) are filled into their 
respective templates as they become known. 

The information gets sorted and given to each client 
node as follows. 
<requires> 
  <role name=”nfsserver”>10.0.0.1</role> 
</requires> 

and to the server as follows. 
<requires> 
  <role name=”nfsclient”>10.0.0.2</role> 
  <role name=”nfsclient”>10.0.0.3</role> 
</requires> 

The scripts on the client nodes take the “nfsserver” 
IP address and use it to construct the proper line to add 
to the fstab file. The scripts on the head node take each 
“nfsclient” IP address and append an authorization line 
to the exports policy file. Then, the server process and 
client mounts (depending on the role) are started. Since 
we do not assume that the NFS server will be online 
when the client node’s contextualization retrieval 
completes for each mount requirement, the NFS client 
nodes try to mount the volume in a loop that checks 
whether the mount was successful. 

 
4.2. STAR Cluster 
 

To support STAR [16] workloads, we created a 
virtual cluster using a Scientific Linux 4.4 base image, 
VDT [17] packages, and Torque [18]. The OSG 0.6.0 
CE installation was used for the head node template 
image, and the OSG 0.6.0 wn-client installation was 
used for the worker node template image. The virtual 
head node runs a Globus GRAM2 job gateway to a 
localhost Torque server, a GridFTP server [19], and an 
NFS server. The worker nodes run Torque MOM 
processes (processes that sit on each worker node to 
run jobs) and mount NFS directories from the head 
node (OSG's typical $HOME, $APP, and $DATA). 
The head node has two network interfaces, one for its 
Internet addressable processes (GRAM, GridFTP) and 
one for a private network. The worker nodes have one 

interface each, all on the private network. This is a 
typical Grid cluster gateway + NAT setup. 

The contextualization demands in this example are 
more complex. Since the headnode has both a public 
and private IP address, we have to be careful that it is 
the private address of the cluster headnode that gets 
connected to the worker nodes for NFS and Torque. 
Also, using Torque requires contextualization features 
that are new in this example, namely, full identity 
distribution (including SSHd host keys). The 
contextualization process is also used to late-configure 
GRAM and GridFTP to handle identity configuration 
(they both need to be configured with the proper public 
facing fully qualified domain name). 

The headnode’s two network identities are both 
reflected in the provides section (as shown below) in 
order to introduce tags for each. The eth1 tag is given 
to the private interface, and this is indicated in the 
“torqueserver” and “nfsserver” provided roles. Hence, 
anything requiring a match for these roles will get the 
eth1 network identity in response. 
<provides> 
  <identity> 
    <interface>eth0</interface> 
  </identity> 
  <identity> 
    <interface>eth1</interface> 
  </identity> 
  <role interface="eth1"> 
      torqueserver</role> 
  <role interface="eth1">nfsserver</role> 
</provides>       
<requires> 
  <identity /> 
    <role name="torqueclient"   
      hostname="true" pubkey="true" /> 
    <role name="nfsclient" /> 
</requires> 

In the requires section, the “torqueclient” annotation 
indicates that more than the IP address is necessary. 
The hostname is required as well as the SSHd host key 
because SSHd host-based authentication is used with 
Torque and GRAM2 to allow jobs to run. This sets up 
free SSH access from node to node if the source and 
target system account are the same. Again, the worker 
node annotations are similar, with the role labels 
reversed (but no dual networking).  

On boot, each worker node generates an SSHd host 
key, and the agent reports this to the contextualization 
service (using secure channel) with the rest of identity 
information.  

After the contextualization information has been 
retrieved, SSHd on all nodes is configured by 
populating the node’s global “known_hosts” file as 
well as the “hosts.equiv” file (we implement a “many-
to-many” approach to handle nonserial workloads 
where there will be intercommunication among the 



nodes). Further, the /etc/hosts file on each node is 
populated with all known IP address and hostnames. 
This avoids any DNS problems if the site has not 
configured things correctly, especially for reverse 
DNS, which typically affects network security 
software. On the worker nodes, the Torque “server” 
file is populated with the head node hostname, and 
NFS is configured as in the previous example. On the 
headnode, Torque's “nodes” file is populated with all 
of the authorized MOM hostnames, Torque’s “server” 
file is populated with the head node hostname 
(configuring itself as the master), and NFS is 
configured as in the example before. 

GRAM and GridFTP require the public fully 
qualified domain name of the intended contact address 
in order to work correctly with GSI. We found that on 
multi-NIC nodes this was not trivially deduced in a 
startup script. Thus, the contextualization engine helps 
identify the proper hostname for configuring these 
components. On EC2, the public address is not even an 
actual on-board network interface (each EC2 VM is 
behind a NAT and the public address is known only 
via EC2 instance metadata), and so this was especially 
useful in that case. 
 
5. Related Work 
 

One approach to appliance deployment is to only 
partially rely on preconfigured images. In this 
approach, an appliance is deployed by deploying an 
image with as much of a base configuration as possible 
(“golden image”) and installing applications on the fly. 
This approach has been used by VMPlant [3] as well as 
[4]. While for this only generic contextualization is 
sufficient, it makes the appliance deployment 
potentially lengthy.  

The term virtual appliance was introduced by 
Sapuntzakis and Lam [10], and their work describes 
the first attempts at defining contextualization 
information as well as explaining the requirements for 
appliance management. We build on this work, 
generalizing the method and enabling the use of 
generic tools and protocols for configuration 
management.  

Configuration management tools such as LCFG 
[20], Quattor [21], and Bcfg2 [22] are somewhat 
similar to appliance creation and deployment. 
However, they rely on traditional configuration 
techniques and do not (as of now) cleanly separate the 
process of appliance creation and contextualization. 
Much work has also been done in the industry by 
companies that explicitly manage appliances (e.g., 
rPath [23]); we collaborate with those efforts as 
builders of deployer-side software. In particular, the 

Open Virtualization Framework [24] defines high-level 
concepts and best practices similar to the work 
described here; our approach is more detailed and 
serves the specific needs of our community.  
 
6. Future Directions 
 

While our current approach allows us to solve 
current problems (namely, provide a cluster on the fly 
for nontrivial applications), it needs to be refined to 
provide more features. While our implementation 
currently operates on identity information we see 
increasing demand for the exchange of application-
specific data that could be brokered as “blobs” to be 
interpreted by contextualization agents; we are 
currently generalizing the techniques described here to 
accommodate this requirement. Also, virtual clusters 
are only one type of context; in general, virtual 
constructs could span the range from individual VMs 
through clusters to virtual Grids that could potentially 
benefit from a hierarchical organization.  

Further, our methods to date do not address the 
critical issue of recontextualization: redistributing the 
context based on dynamically changing context 
information. The ability to do so would allow us to add 
VMs to a context on the fly, for example, by adding 
new nodes to an MPI computation, or account for 
changes due to, for example, appliance migration. The 
ability to make those changes, however, will require 
tighter collaboration with OS-level tools.  

 
7. Summary 
 

In this paper we described a new technique, called 
contextualization, enabling the dynamic creation of 
functioning virtual constructs aware of their context. 
We discussed two existing implementations providing 
generic contextualization information, their respective 
assumptions and capabilities, and gave examples ofow 
they can be used in conjunction with a context broker 
to deploy virtual clusters. Our purpose in this paper 
was to describe a general solution and a process that 
can be used with any deployer and any appliance 
provider that fulfill the specified conditions of  secure 
transfer of information. Based on this process, we 
highlighted the need for standards on the deployers and 
appliance provider’s side. 

Making contextualization an accepted technology 
will require the collaboration of many branches of 
technology. Besides the obvious ones of appliance 
configuration and deployment, better and more flexible 
methods of context information delivery to appliances 
will need to be developed to allow for 
recontextualization. Further, applications will also need 



to develop the awareness of the potential of 
contextualization in order to leverage it.  
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