
Infrastructure Outsourcing in Multi-Cloud Environment

Kate Keahey
Argonne National

Laboratory
keahey@mcs.anl.gov

Patrick Armstrong
University of Chicago
oldpatricka@uchicago.edu

John Bresnahan
Argonne National

Laboratory
bresnaha@mcs.anl.gov

David
LaBissoniere

University of Chicago
labisso@uchicago.edu

Pierre Riteau
University of Chicago
priteau@uchicago.edu

ABSTRACT
Infrastructure clouds created ideal conditions for users to
outsource their infrastructure needs by offering on-demand, short-
term access, pay-as-you-go business model, the use of
virtualization technologies which provide a safe and cost-effective
way for users to manage and customize their environments, and
sheer convenience, as users and institutions no longer have to
have specialized IT departments and can focus on their core
mission instead. These key innovations however also bring
challenges which include high levels of failure; lack of
interoperability between cloud providers, which puts significant
lock-in pressure on the user, and lack of tools that allow users to
leverage the on-demand growing and shrinking of infrastructure.
All these factors prevent users from capitalizing on the
infrastructure cloud opportunity. In this paper we propose a multi-
cloud auto-scaling service that enables the user to leverage
"computational power on tap" provided by infrastructure clouds,
i.e., allows the user to easily deploy resources across multiple
private, community, and commercial clouds; provides high
availability in that it allows users to replace failed resources; and
scales to demand. The policies governing scaling are customizable
based on system and application-specific indicators. We will
describe the service architecture and implementation and discuss
results obtained in the sustained deployment and management of
thousands of virtual machines on EC2.

General Terms
Management, Design, Experimentation.

Keywords
Cloud computing, Infrastructure-as-a-Service, Platform-as-a-
Service, Nimbus.

1. INTRODUCTION
Outsourcing and sharing resources has many potential

benefits to scientific projects. First, it provides access to more
sophisticated resources -- in terms of size, cutting-edge
technology or architectural diversity -- that is often beyond the
means of a single institution to acquire. The resource can also be
used with greater flexibility: e.g., a small “slice” of resource over
long time or a larger slice occasionally. Further, it creates
potential for access to economies of scale via consolidation and
thus provides a better amortization of the original investment.
And, last but not least, it eliminates of the overhead of system

acquisition and operation for an institution via outsourcing
computing. This is valuable as it allows scientific institutions to
focus on delivering results in the form of scientific breakthroughs
that are its mission in the first place. All those reasons are
powerful motivators for outsourcing where a suitable outsourcing
paradigm can be found.

Infrastructure-as-a-Service (IaaS) clouds [1] (also called
infrastructure clouds) created ideal conditions for users to
outsource their infrastructure needs. A typical infrastructure cloud
offers (1) on-demand, short-term access, which allows users to
flexibly manage peaks in demand, (2) pay-as-you-go model,
which helps save costs for bursty usage patterns (i.e., helps
manage “valleys” in demand), (3) access via virtualization
technologies which provides a safe and cost-effective way for
users to manage and customize their own environments, and (4)
sheer convenience, as users and institutions no longer have to
have specialized IT departments and can focus on their core
mission instead. The flexibility of the approach allows users to
also outsource as much or as little of their infrastructure
procurement as their needs justify: they can keep a resident
amount of infrastructure in-house while outsourcing only at times
of increased demand and they can outsource to a variety of
providers choosing the best service levels for the price the market
has to offer.

However, as well as all these advantages the cloud
environment also has its challenges. The clouds existing today
have levels of failure that are higher than traditional in-house
machines; this is due not only to service levels of specific
providers, but also to the fact that infrastructure cloud resources
are typically accessed over the Internet with high potential for
network failures or delays. Interoperability between providers is
in its infancy, making efficient markets infeasible and putting
significant lock-in pressure on the user (i.e., the barrier for
moving from provider to provider is significant and the effort to
scale it is borne entirely by the user). And last but not least,
currently the methods of leveraging the on-demand growing and
shrinking of infrastructure are crude to say the least: users
typically are reduced to doing it manually or setting up primitive
infrastructures to manage part of the solution space for them. This
prevents them from capitalizing on the infrastructure cloud
opportunity.

In this paper, we describe infrastructure which automates
outsourcing computation to the cloud. We propose a multi-cloud
auto-scaling service that provides an easy way for the user to
leverage "computational power on tap", i.e., allows the user to
easily deploy resources across multiple private, community, and
commercial clouds. Our emphasis is on enabling users to build
highly scalable services and also provide high availability, to
allow users to replace failed resources ensuring continuous
presence on the network. Further, the system carries support for
adapting policies governing scaling based on system and
application-specific indicators. We will describe the service
architecture and implementation and discuss results obtained in

(c) 2012 Association for Computing Machinery. ACM acknowledges that this
contribution was authored or co-authored by an employee, contractor or affiliate of
the United States government. As such, the United States Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to allow
others to do so, for Government purposes only.

Workshop on Cloud Computing Federation, September 21st, 2012, San Jose, CA

Copyright 2012 ACM 978-1-4503-0888-5/11/07…$10.00.

the sustained deployment and management of thousands of virtual
machines on Amazon Web Services’ EC2 service [2].

This paper is structured as follows. Section 3 describes the
model our services implement. Section 4 and 2 describe
respectively the architecture and the design principles that led to
the development of this architecture. Section 5 describes
challenges in scalability and their resolution when implementing
scaling of thousands of VM instances on Amazon’s EC2.

2. DESIGN PRINCIPLES
Below we summarize the principles behind our design:

Any Scale. To ensure “computational power on tap” it is
necessary to allow users scale the resources over which their
computation is deployed, up and down, easily and automatically –
much as electrical devices have the ability to draw as much or as
little power from the grid as they need. We should provide the
ability to auto-scale via dynamically provisioning resources in the
cloud in reaction to system-specific or application-specific
sensors, which the user can pick from a library of ready-made,
pre-defined sensors, but also give the user the ability to define and
add his or her own sensors that can eventually be published and
shared with other users. The sensors should include a large variety
of events -- including operator-driven/manual events. This implies
information presentation consistent with manual control: the
ability to “zoom in” on the state and composition of any collection
of resources, as well as the ability to use simple visual cues such
as e.g., up and down arrow keys to regulate resource size.

High Availability (HA). Infrastructure clouds today are often
unreliable [3]. This is due not only to service levels of specific
providers, but also to the fact that infrastructure cloud resources
are typically accessed over the Internet with high potential for
network failures or delays – and as such may only improve in
special cases in the foreseeable future. For this reason, it is
essential that an infrastructure aiming to deliver “uninterrupted
power supply” address this problem. We develop systems with the
assumption that any VM can die and be replaced quickly to
preserve the system from a prolonged downtime or service level
deterioration. For this reason, we design the system to achieve
minimum time to repair (TTR).

MultiCloud. Any system that provisions resources from only
one provider exposes itself to the same kind of failure that
threatens electricity consumer taking power from just one source.
From the perspective of achieving “uninterrupted power supply”
working with multiple providers isolates the consumer from
technical and business failures any one provider might be
experiencing and thus prevents vendor lock-in. It also provides the
underpinnings for the creation of markets and thus conveying the
best price to the consumer via competition. For this reason our
infrastructure should allow users to integrate resources from
multiple infrastructure clouds: from private clouds to community
and commercial clouds as a “continuum” of available
infrastructure resources.

Your Policies, Our Enactment. Different applications and
services want to use cloud resources differently. Our focus is on
providing infrastructure, i.e., solid and robust enactment that can
carry out user policies taking into accont resource availability and
status. Providing policies should be as broad as possible, e.g. it
should be possible to extend the system by building customized
policy plugins. The system will provide the mechanism to collect
all the sensor inputs that could be relevant for the user to develop
relevant policies and also allow the user to add custom sensors.

3. MODEL
We define a worker VM as a single, ephemeral and

replacable compute resource that can be provisioned on-demand
and capable of carrying out computation of a specific kind.
Worker VMs are ephemeral by which we mean that they may
become unavailable at any time, due to resource failure,
temporary or persistent network failure, or other issues. A worker
unit also needs to be replaceable, i.e. it should be possible to
replace it with a worker unit of the same kind such that the new
unit can automatically rejoin the computation carried out by the
worker units. The worker units are independent of each other.

We define a domain as a pool of homogeneous worker VMs
that are contextualized (in terms of both security and
configuration) to work with domain-specific entities and whose
size is governed by domain-specific policies. There could be
potentially many distinct domains composed of VMs of the same
type, belonging to different clients or serving different purposes
for those clients, just like there are many potential instantiations
of a service.

The policies governing the size of the domain may take into
account multiple factors including system-specific metrics, such
as number of individual worker units or load on individual worker
units, application-specific metrics, such as the size and makeup of
the workload queue or the number of network connections open to
a specific resource, or a variety of other events including e.g.,
console events or an explicit request by a domain stakeholder
(such as a scheduler for example). At any given time, due to a
variety of conditions (such as changes in policy, worker node
failures or inaccessibility), a domain has an intended size and an
actual size – the purpose of a domain manager is to ensure that the
intended size is equal to the actual size.

3.1 Using Domains
 Our model is based on the assumption that the work of a

service can be performed on multiple VMs independent of each
other, that can be scaled up or down according to demand. This
means that an application or service leveraging this model has to
be capable of absorbing new processing capability, i.e., an
application process that is newly strated can be automatically
integrated into the application. The concept of high availability is
additionally reliant on the fact that any process may die without
affecting the application as a whole. This means that the work
carried out on the VMs is such that can be easily interrupted and
easily taken over by a replacement unit should a resource failure
occur.

The most common way to leverage the concept of a domain
is via applications with a well structured, ordered, workload. Such
workload can be represented by an AMQP message queue, where
the messages represent work units, a scheduler queue, where jobs
represent work units, a workflow of tasks to be executed on a
domain, or a list of data transfers to be serviced in a data transfer
service. Workload is a logical concept and does not necessarily
imply a durable queue. In practice, a domain could be used to
support e.g., web servers that work with DNS round-robin.
Howeer, in order to provide high availability we have to rely on a
durable queue, i.e., with the property that a work unit persists on
the queue until its receipt has been acknowledged. A workload
can represent a “push queue”, which directs units of work to
specific worker units in a domain (typically implemented by e.g.,
batch schedulers or workflow systems) or a “pull queue” which
relies on the worker units to claim the work units themselves
(implemented by e.g. systems such as BOINC [4] or Condor [5]).

In our model, a service is realized by conveying the
workload from the service clients. On the interface side, the

clients add their work units to the workload queue and get notified
of the acceptance of the request and eventually a result. On the
execution side, the workload is distributed to worker units of a
domain hosting the execution of the service (either by the workers
accessing the workload queue themselves in a pull queue, or by
the work units being distributed to the workers). The domain is
monitored and can dynamically grow or shrink as dictated by
policies governing that domain. Results of the execution are
represented in ways defined by the service layer (e.g., they may or
may not be returned to the client directly).

Domains can be used with systems supporting loosely-
coupled preemptible processes such as Condor [5], BOINC [4], or
Swift [6]. Examples of how an application can dynamically
provision resources based on the state of its scheduler queue have
been described in [7, 8]. Alternatively, they can also be used with
applications requiering stronger synchronization using primitives
such as leader election [9] as described in Section 4.2 when
discussing our system design.

4. APPROACH
The Domain Manager service implements the concept of a

domain, i.e., ensures that it is properly deployed and
contextualized, and the number of worker units within a domain
scales up and down according to domain policies. The rest of this
section describes the architecture of the Domain Manager.

Figure 1: Domain Manager
Figure 1 above shows a domains being managed by the

Domain Manager. The domain is distributed over two clouds;
with two instances on each. The Domain Manager regulates the
size of a domain to reflect sensor input and the associated policies.
The Domain Manager relies on sensor information to monitor the
deployed VMs, assess their health, and deploy, terminate or
redeploy them as needed. The policies are enforced in the context
of heartbeat information, informing the Domain Manager of a
worker VM health state as well as Provisioner information,
informing the Domain Manager of a worker VM lifecycle. Other
sources of information can be added. Based on evaluating the
information against policies the Domain Manager makes a
decision to either add or terminate some of the worker VMs. The
Domain Manager decision is carried out by the Provisioner that
acts by either deploying or terminating VMs and contextualizing
them after deployment them to work as part of the right domain.

To ensure high availability of a domain, all the major
components of the system need to be highly available.
Furthermore, the system depcted in Figure 1 itself is bootstrapped
and monitored by cloudinit.d [10] which ensures repeatable
deployment and ongoing monitoring. Note that if any of the
system components die, it will not affect the execution of the

domain; it will merely affect how quickly it responds to user
policies and sensor inputs.

Section 4.1. provides an overview of the interacting
components. The design for high availability is descrbed in
Section 4.2. Section 4.3 explains implemtation details.

4.1 Components
The Domain Manager Service allows clients to create,

destroy, and manage domains. Each domain is associated with a
Decision Engine that takes two inputs: (1) policy (which can be
dynamically modified by a client) and (2) dynamically provided
sensor information that can be both system-specific (e.g.,
information about VM lifecycle and health state) and application-
specific (e.g., size of workload for an application). The Decision
Engine is a component of the Domain Manager that evaluates the
policies against current sensor input and issues commands to the
Provisioner to start or stop VM instances. The output of the
Domain Manager is a specific directive to deploy specific
numbers of VM instances on specific resources. The Domain
Manager is implemented to be highly available as per the design
described in Section 4.2.

The Provisioner provides an adaptation layer for IaaS sites,
and contextualizes deployed VMs. Each launch has a unique
identifier, supplied by the client, i.e., the Domain Manager, to
provide support for idempotency so that a specific request can be
retried without launching an additional VM as a result (this
functionality is mirrored by IaaS). A launch request also contains
a VM type obtained from the Image Library and scheduling
constraints such as instance size, the targeted IaaS provider,
availability zones, etc. Optionally, a launch request also contains
an attribute bag of name/value pairs that can be injected into the
VM type to turn it into a customized VM image. The Provisioner
is implemented to be highly available as per the design described
in Section 4.2.

The Image Library allows the Provisioner to dereference a
VM type identifier into the necessary VM image compatible with
a particular IaaS site. It also currently does the work of
interpolating the attribute bag referred to above into a
configuration template specific to the deployable type. The Image
Library is implemented to be highly available.

Sensors. To function correctly, the system relies on input
from a variety of system-specific and application-specific sensors.
The default sensors consist of a VM lifecycle sensor and VM
agent. The lifecycle sensor is implemented by the Provisioner; it
continually queries IaaS and creates notifications of any VM
lifecycles stage change (i.e., whether it has been deployed or
terminated). In addition the VM agent runs on every VM instance
launched via Domain Manager, watches processes and reports
heartbeats to the Domain Manager. The lack of heartbeats for too
long of a period causes the Domain Manager to consider the VM
instance unhealthy (it may in reality be healthy but suffering from
a network partition). The VM agent is bootstrapped by the
contextualization process [] executed on VM boot.

4.2 Leveraging the Domain Model
To ensure high availability of the overall system, each of the

critical components shown in Figure 1, in particular the Domain
Manager, Provisioner and Image Library, has to be implemented
as a highly available component, capable of scaling up and down
and absorbing failure. The challenge of such implementation was
that these services do not lend themselves easily to such an
implementation: they have a need for internal synchronization,
critical sections, and specialized roles. In this section we will
describe how we used the domain model to implement those
services and at the same time give an example of how the domain

model could be leveraged by other applications seeking to
leverage the domain model. We assume that each service is
implemented by a set of processes and for simplicity we also
assume that each VM has one process, implementing a service
function, that is started on boot.

As per the assumptions about worker units (which can appear
or disappear at any moment), leveraging the domain model
requires us to decompose the function of the service into
independent processes that can die or become unavailable at any
moment. When they die, they need to be replaced by new service
processes that can join the computation automatically. The
challenge of the design is therefore the same as the challenge of
adapting applications described in Section 3.1; we need to make
sure that (1) any given service process can die without affecting
the service function and (2) a service process that is newly started
to compensate can automatically replace it.

To implement this, we analyzed the functions of services
used in our approach and decomposed them into smaller units of
work, isolating critical sections. We discovered that “work units”
fall roughly into two categories: work that can be executed by
reactors, i.e., multiple service process working at the same time
(e.g., processing query requests) and work that can be carried out
only by actors, i.e., exactly one service process at a time (e.g.,
critical sections). We then devised a role relay system that
allowed us to weave work of the service components back
together. According to the characterization above, for each service
we defined several roles: one role for the reactor processes, and
one for each of the unique work units. The reactors work on units
contained in an internal queue whereas the actors work both on
reactor tasks and on their specialized function.

We then implemented the service processes such that they
can take on any role required by the service. Whenever one of the
reactors dies, its work is taken over by the other reactors (and a
new reactor is eventually added). Whenever one of the actors dies,
we use the requirement that any service process can take on any
role, stage a leader election among the reactor processes, and
designate a new actor from amongst those processes (a new
reactor is eventually added). In this way we ensure that critical
service processes are quickly replaced on failure.

4.3 Implementation
Each component service is made up of multiple worker

processes which share a common AMQP message queue. Each
worker functions as a reactor, pulling messages from the queue
and executing them. Messages are service calls specifying a
service operation and a set of parameters. The reactor executes the
operation and may return a result to the caller. Each operation is
idempotent or has known retry semantics.

All service workers are bootstrapped in the same way with
the same configuration. Actors are determined by leader elections
implemented via Apache ZooKeeper [9]. These elections are
participated in by all workers and determine exactly one worker to
be promoted to the actor role. If this elected actor later dies, or is
partitioned away, it will lose its actor role and another worker will
be elected within a predictable bound of time.

This model is used for each of the component services. The
Domain Manager has two actor roles. The Decider actor performs
regular invocations of the decision engine for each domain. The
Doctor monitors the heartbeats received from each deployed node
and determines when to mark nodes as unhealthy.

The Provisioner has a single Leader actor that performs
queries of IaaS sites and contextualization services. It adjusts node
lifecycle states based on the information determined by these
queries.

The Image Library has no actor roles; all workers serve as
reactors only.

5. Evaluating Time to Scale
To evaluate how reactive our solution is, we tested the time

to scale (TTS) of our service. Our focus was on a scenario which
represents the worst-case scenario for our system: where
potentially multiple clients request modifications for potentially
multiple domains by the deployment of a VM; our TTS measured
how quickly those aggregate requests can be satisfied. In our
experiments this situation was approximated by using one client
and single domain. We tested the system on EC2 micro instances.
Initially, we create an empty domain and reconfigure it to be
composed of 1,850 instances. Each of these instances are
requested independently to the IaaS provider with a VM image
containing a pre-installed deployment of our VM agent. Each VM
is contextualized at boot time to configure the information unique
to this domain.

Figure 2: Deployment time by node number

Figure 2 shows that 1,850 instances can be deployed in

around 13 minutes. It also shows the various components of the
deployment process.

The blue points shows when request to deploy has been
acknowledged by Amazon. In our experiments, we found that
issuing requests to the IaaS provider can very quickly become a
bottleneck. To compensate for that, we deployed a multi-
Provisioner, implemented based on the domain model described
above; the data shown in the figure was deployed using 10
Provisioner processes. Further, we found that in addition to
instance limits (which are explicit and specific to accounts),
Amazon also has request limits per time unit which are not
explicitly defined and hard to track; however, once such a limit is
exceeded, the requests are rejected and the deployment of those
VMs needs to be re-requested. One possible way of dealing with it
is implementing exponential backoff. Another issue we
discovered is that Amazon EC2 micro instances can be unreliable,
with a small fraction of instances never reaching a successful VM
boot. The strategy we implemented here is overprovisioning, i.e.,
requesting a certain percentage of VMs above the desired number
(in our case it was ~10%) so that a desired number may eventually
be obtained.

The green points shows when Amazon deployed the VM,
i.e., transferred the image and started it booting. While measuring
this quality we discovered that Amazon sometimes does not report
transition to this state in a timely fashion; sometimes the reporting
is so far from reality in fact that it looks as if the VM has died. For

this reason we approximated the moment when the VM reaches
this state by the time it starts contextualization (as reported by the
contextualization agent). The pattern visible in the green straight
lines in the Figure 2 shows when groups of VMs reached that state
and is an artifact of sampling frequency; more frequent sampling
of this information would produce more leaning lines.

Finally, the red points show when contextualization for the
specific instances was finished. This is the point when the VM is
ready for use, i.e., the operating system has booted and all
additional configuration work has finished. This group of points
has the highest variance as system boot and contextualization take
time and phenomena such as noisy neighbour introduce a
significant level of variability to how fast processes in the VMs
can execute. Another potential issue is sequential context queries,
which make some VMs wait.

6. RELATED WORK
Several commercial tools [11-14] provide capabilities covering
some subset of the work described here but are either tied to
specific commercial provider, specialized for a particular mode of
usage not consistent with scientific requirements, or closed
proprietary solutions that cannot be studied or adapted to
scientific resources. Our purpose is to build a highly adaptable
system capable of executing in a multi-cloud environment.
The University of Victoria’s Cloud Scheduler project [15, 16] also
demonstrated the viability of similar concepts when applied to the
scientific community, but with emphasis on sharing resources
provisioned in the cloud between different communities using
batch queue systems, rather than more general need-based scaling.
Cloud Scheduler monitors a Condor queue for new jobs, and
provisions resources across Nimbus clouds and Amazon EC2.
Several projects [17-21] evaluate different policies in the context
of auto-scaling systems such as the one presented here. Our
objectives are focused on the design and implementation of the
system itself rather than the policies described in those works.

7. SUMMARY
We described a system that allows users to automatically

outsource their computational needs to infrastructure cloud
providers. We describe the properties of scalability and
availability that we seek to provide in our design as well as the
model for applications to use in order to leverage them. Our EC2
evaluation highlights several deployment challenges at
infrastructure cloud providers that arise when implementing a
system of this type to work at large scales and provides insight
into how they were overcome.

8. ACKNOWLEDGMENTS
This material is based on work supported in part by the

National Science Foundation under Grant No. 0910812 to Indiana
University for "FutureGrid: An Experimental, High-Performance
Grid Test-bed.", in part by the OOI Cyberinfrastructure program
funded through the JOI Subaward, JSA 7-11, which is in turn
funded by the NSF contract OCE-0418967 with the Consortium
for Ocean Leadership, Inc., and in part by the Office of Science,
U.S. Department of Energy, under Contract DE-AC02-
06CH11357.

9. REFERENCES
[1] Armbrust, M., et al., Above the Clouds: A Berkeley View of
Cloud Computing. 2009, University of California at Berkeley.

[2] Amazon Elastic Compute Cloud (Amazon EC2)
http://www.amazon.com/ec2.
[3] Jackson, K., L. Ramakrishnan, K. Muriki, S. Canon, S. Cholia,
J. Shalf, H. Wasserman, and N. Wright. Performance Analysis of
High Performance Computing Applications on the Amazon Web
Services Cloud Amazon Web Services Cloud. in CloudCom.
pp.159-168, Nov. 30 2010-Dec. 3 2010, Indianapolis, IN.
[4] Berkeley Open Infrastructure for Network Computing. 2002;
Available from: http://boinc.berkeley.edu.
[5] Litzkow, M.J., M. Livny, and M.W. Mutka, Condor - A
Hunter of Idle Workstations, in 8th International Conference on
Distributed Computing Systems. 1988. p. 104-111.
[6] The Swift Parallel Scripting Language:
http://www.ci.uchicago.edu/swift/main/.
[7] Harutyunyan, A., P. Buncic, T. Freeman, and K. Keahey,
Dynamic virtual AliEn Grid sites on Nimbus with CernVM.
Journal of Physics: Conference Series, 2010. 219(7).
[8] Marshall, P., K. Keahey, and T. Freeman, Elastic Site: Using
Clouds to Elastically Extend Site Resources. CCGrid 2010, 2010.
[9] Hunt, P., M. Konar, F.P. Junqueira, and B. Reed, ZooKeeper:
Wait-free Coordination for Internet-Scale Systems, in USENIX
Annual Technology Conference 2010.
[10] Bresnahan, J., T. Freeman, D. LaBissoniere, and K. Keahey,
Managing Appliance Launches in Infrastructure Clouds. TeraGrid
Conference, 2011.
[11] Amazon Web Services: Auto Scaling:
http://aws.amazon.com/autoscaling/.
[12] Cloud Foundry. 2011: http://www.cloudfoundry.com/.
[13] RightScale: www.rightscale.org.
[14] SCALR: http://scalr.com/.
[15] Armstrong, P., et al., Cloud Scheduler: a Resource Manager
for a Distributed Compute Cloud. 2010.
[16] Sobie, R., et al., Data Intensive High Energy Physics
Analysis in Distributed Cloud, in High Performance Computing
Symposium. 2011: Montreal, Canada.
[17] Mao, M. and M. Humphrey. Auto-Scaling to Minimize Cost
and Meet Application Deadlines in Cloud Workflows. in SC11.
2011.
[18] Marshall, P., H. Tufo, K. Keahey, D. LaBissoniere, and H.M.
Woitaszek. Architecting a Large-Scale Elastic Environment -
Recontextualization and Adaptive Cloud Services for Scientific
Computing. in ICSOFT. 2012. Rome, Italy.
[19] Marshall, P., H. Tufo, and K. Keahey. Provisioning Policies
for Elastic Computing Environments. in 9th High-Performance
Grid and Cloud Computing Workshop and the 26th IEEE
International Parallel and Distributed Processing Symposium
(IPDPS). 2012.
[20] Ruth, P., P. McGachey, and D. Xu, VioCluster:
Virtualizationfor Dynamic Computational Domains. IEE
International Conference on Cluster Computing, 2005.
[21] Assunacao, M.D., A.D. Constanzo, and R. Buyya. Evaluating
the Cost-Benefit of Using Cloud Computing to Extend the
Capacity of Clusters. in 18th ACM Symposium on High
Performance Distributed Computing. 2009.

	

