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ABSTRACT 
Infrastructure clouds created ideal conditions for users to 
outsource their infrastructure needs by offering on-demand, short-
term access, pay-as-you-go business model, the use of 
virtualization technologies which provide a safe and cost-effective 
way for users to manage and customize their environments, and 
sheer convenience, as users and institutions no longer have to 
have specialized IT departments and can focus on their core 
mission instead. These key innovations however also bring 
challenges which include high levels of failure; lack of 
interoperability between cloud providers, which puts significant 
lock-in pressure on the user, and lack of tools that allow users to 
leverage the on-demand growing and shrinking of infrastructure. 
All these factors prevent users from capitalizing on the 
infrastructure cloud opportunity. In this paper we propose a multi-
cloud auto-scaling service that enables the user to leverage 
"computational power on tap" provided by infrastructure clouds, 
i.e., allows the user to easily deploy resources across multiple 
private, community, and commercial clouds; provides high 
availability in that it allows users to replace failed resources; and 
scales to demand. The policies governing scaling are customizable 
based on system and application-specific indicators. We will 
describe the service architecture and implementation and discuss 
results obtained in the sustained deployment and management of 
thousands of virtual machines on EC2.  
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Management, Design, Experimentation. 
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1. INTRODUCTION 
Outsourcing and sharing resources has many potential 

benefits to scientific projects. First, it provides access to more 
sophisticated resources -- in terms of size, cutting-edge 
technology or architectural diversity -- that is often beyond the 
means of a single institution to acquire. The resource can also be 
used with greater flexibility: e.g., a small “slice” of resource over 
long time or a larger slice occasionally. Further, it creates 
potential for access to economies of scale via consolidation and 
thus provides a better amortization of the original investment. 
And, last but not least, it eliminates of the overhead of system 

acquisition and operation for an institution via outsourcing 
computing. This is valuable as it allows scientific institutions to 
focus on delivering results in the form of scientific breakthroughs 
that are its mission in the first place. All those reasons are 
powerful motivators for outsourcing where a suitable outsourcing 
paradigm can be found.  

Infrastructure-as-a-Service (IaaS) clouds [1] (also called 
infrastructure clouds) created ideal conditions for users to 
outsource their infrastructure needs. A typical infrastructure cloud 
offers (1) on-demand, short-term access, which allows users to 
flexibly manage peaks in demand, (2) pay-as-you-go model, 
which helps save costs for bursty usage patterns (i.e., helps 
manage “valleys” in demand), (3) access via virtualization 
technologies which provides a safe and cost-effective way for 
users to manage and customize their own environments, and (4) 
sheer convenience, as users and institutions no longer have to 
have specialized IT departments and can focus on their core 
mission instead. The flexibility of the approach allows users to 
also outsource as much or as little of their infrastructure 
procurement as their needs justify: they can keep a resident 
amount of infrastructure in-house while outsourcing only at times 
of increased demand and they can outsource to a variety of 
providers choosing the best service levels for the price the market 
has to offer.  

However, as well as all these advantages the cloud 
environment also has its challenges. The clouds existing today 
have levels of failure that are higher than traditional in-house 
machines; this is due not only to service levels of specific 
providers, but also to the fact that infrastructure cloud resources 
are typically accessed over the Internet with high potential for 
network failures or delays. Interoperability between providers is 
in its infancy, making efficient markets infeasible and putting 
significant lock-in pressure on the user (i.e., the barrier for 
moving from provider to provider is significant and the effort to 
scale it is borne entirely by the user). And last but not least, 
currently the methods of leveraging the on-demand growing and 
shrinking of infrastructure are crude to say the least: users 
typically are reduced to doing it manually or setting up primitive 
infrastructures to manage part of the solution space for them. This 
prevents them from capitalizing on the infrastructure cloud 
opportunity. 

In this paper, we describe infrastructure which automates 
outsourcing computation to the cloud. We propose a multi-cloud 
auto-scaling service that provides an easy way for the user to 
leverage "computational power on tap", i.e., allows the user to 
easily deploy resources across multiple private, community, and 
commercial clouds. Our emphasis is on enabling users to build 
highly scalable services and also provide high availability, to 
allow users to replace failed resources ensuring continuous 
presence on the network. Further, the system carries support for 
adapting policies governing scaling based on system and 
application-specific indicators. We will describe the service 
architecture and implementation and discuss results obtained in 
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the sustained deployment and management of thousands of virtual 
machines on Amazon Web Services’ EC2 service [2].  

This paper is structured as follows. Section 3 describes the 
model our services implement. Section 4 and 2 describe 
respectively the architecture and the design principles that led to 
the development of this architecture. Section 5 describes 
challenges in scalability and their resolution when implementing 
scaling of thousands of VM instances on Amazon’s EC2. 

2. DESIGN PRINCIPLES 
Below we summarize the principles behind our design: 

Any Scale. To ensure “computational power on tap” it is 
necessary to allow users scale the resources over which their 
computation is deployed, up and down, easily and automatically – 
much as electrical devices have the ability to draw as much or as 
little power from the grid as they need. We should provide the 
ability to auto-scale via dynamically provisioning resources in the 
cloud in reaction to system-specific or application-specific 
sensors, which the user can pick from a library of ready-made, 
pre-defined sensors, but also give the user the ability to define and 
add his or her own sensors that can eventually be published and 
shared with other users. The sensors should include a large variety 
of events -- including operator-driven/manual events. This implies 
information presentation consistent with manual control: the 
ability to “zoom in” on the state and composition of any collection 
of resources, as well as the ability to use simple visual cues such 
as e.g., up and down arrow keys to regulate resource size.  

High Availability (HA). Infrastructure clouds today are often 
unreliable [3]. This is due not only to service levels of specific 
providers, but also to the fact that infrastructure cloud resources 
are typically accessed over the Internet with high potential for 
network failures or delays – and as such may only improve in 
special cases in the foreseeable future. For this reason, it is 
essential that an infrastructure aiming to deliver “uninterrupted 
power supply” address this problem. We develop systems with the 
assumption that any VM can die and be replaced quickly to 
preserve the system from a prolonged downtime or service level 
deterioration. For this reason, we design the system to achieve 
minimum time to repair (TTR).  

MultiCloud. Any system that provisions resources from only 
one provider exposes itself to the same kind of failure that 
threatens electricity consumer taking power from just one source. 
From the  perspective of achieving “uninterrupted power supply” 
working with multiple providers isolates the consumer from 
technical and business failures any one provider might be 
experiencing and thus prevents vendor lock-in. It also provides the 
underpinnings for the creation of markets and thus conveying the 
best price to the consumer via competition. For this reason our 
infrastructure should allow users to integrate resources from 
multiple infrastructure clouds: from private clouds to community 
and commercial clouds as a “continuum” of available 
infrastructure resources.  

Your Policies, Our Enactment. Different applications and 
services want to use cloud resources differently. Our focus is on 
providing infrastructure, i.e., solid and robust enactment that can 
carry out user policies taking into accont resource availability and 
status. Providing policies should be as broad as possible, e.g. it 
should be possible to extend the system by building customized 
policy plugins.  The system will provide the mechanism to collect 
all the sensor inputs that could be relevant for the user to develop 
relevant policies and also allow the user to add custom sensors.  

3. MODEL 
We define a worker VM as a single, ephemeral and 

replacable compute resource that can be provisioned on-demand 
and capable of carrying out computation of a specific kind. 
Worker VMs are ephemeral by which we mean that they may 
become unavailable at any time, due to resource failure, 
temporary or persistent network failure, or other issues. A worker 
unit also needs to be replaceable, i.e. it should be possible to 
replace it with a worker unit of the same kind such that the new 
unit can automatically rejoin the computation carried out by the 
worker units. The worker units are independent of each other.  

We define a domain as a pool of homogeneous worker VMs 
that are contextualized (in terms of both security and 
configuration) to work with domain-specific entities and whose 
size is governed by domain-specific policies. There could be 
potentially many distinct domains composed of VMs of the same 
type, belonging to different clients or serving different purposes 
for those clients, just like there are many potential instantiations 
of a service.  

The policies governing the size of the domain may take into 
account multiple factors including system-specific metrics, such 
as number of individual worker units or load on individual worker 
units, application-specific metrics, such as the size and makeup of 
the workload queue or the number of network connections open to 
a specific resource, or a variety of other events including e.g., 
console events or an explicit request by a domain stakeholder 
(such as a scheduler for example). At any given time, due to a 
variety of conditions (such as changes in policy, worker node 
failures or inaccessibility), a domain has an intended size and an 
actual size – the purpose of a domain manager is to ensure that the 
intended size is equal to the actual size.  

3.1 Using Domains  
 Our model is based on the assumption that the work of a 

service can be performed on multiple VMs independent of each 
other, that can be scaled up or down according to demand. This 
means that an application or service leveraging this model has to 
be capable of absorbing new processing capability, i.e., an 
application process that is newly strated can be automatically 
integrated into the application. The concept of high availability is 
additionally reliant on the fact that any process may die without 
affecting the application as a whole. This means that the work 
carried out on the VMs is such that can be easily interrupted and 
easily taken over by a replacement unit should a resource failure 
occur.  

The most common way to leverage the concept of a domain 
is via applications with a well structured, ordered, workload. Such 
workload can be represented by an AMQP message queue, where 
the messages represent work units, a scheduler queue, where jobs 
represent work units, a workflow of tasks to be executed on a 
domain, or a list of data transfers to be serviced in a data transfer 
service. Workload is a logical concept and does not necessarily 
imply a durable queue. In practice, a domain could be used to 
support e.g., web servers that work with DNS round-robin. 
Howeer, in order to provide high availability we have to rely on a 
durable queue, i.e., with the property that a work unit persists on 
the queue until its receipt has been acknowledged. A workload 
can represent a “push queue”, which directs units of work to 
specific worker units in a domain (typically implemented by e.g., 
batch schedulers or workflow systems) or a “pull queue” which  
relies on the worker units to claim the work units themselves 
(implemented by e.g. systems such as BOINC [4] or Condor [5]).  

In our model, a service is realized by conveying the 
workload from the service clients. On the interface side, the 



clients add their work units to the workload queue and get notified 
of the acceptance of the request and eventually a result. On the 
execution side, the workload is distributed to worker units of a 
domain hosting the execution of the service (either by the workers 
accessing the workload queue themselves in a pull queue, or by 
the work units being distributed to the workers). The domain is 
monitored and can dynamically grow or shrink as dictated by 
policies governing that domain. Results of the execution are 
represented in ways defined by the service layer (e.g., they may or 
may not be returned to the client directly).  

Domains can be used with systems supporting loosely-
coupled preemptible processes such as Condor [5], BOINC [4], or 
Swift [6]. Examples of how an application can dynamically 
provision resources based on the state of its scheduler queue have 
been described in [7, 8]. Alternatively, they can also be used with 
applications requiering stronger synchronization using primitives 
such as leader election [9] as described in Section 4.2 when 
discussing our system design.  

4. APPROACH 
The Domain Manager service implements the concept of a 

domain, i.e., ensures that it is properly deployed and 
contextualized, and the number of worker units within a domain 
scales up and down according to domain policies. The rest of this 
section describes the architecture of the Domain Manager.  

Figure 1: Domain Manager 
Figure 1 above shows a domains being managed by the 

Domain Manager. The domain is distributed over two clouds; 
with two instances on each. The Domain Manager regulates the 
size of a domain to reflect sensor input and the associated policies. 
The Domain Manager relies on sensor information to monitor the 
deployed VMs, assess their health, and deploy, terminate or 
redeploy them as needed. The policies are enforced in the context 
of heartbeat information, informing the Domain Manager of a 
worker VM health state as well as Provisioner information, 
informing the Domain Manager of a worker VM lifecycle. Other 
sources of information can be added. Based on evaluating the 
information against policies the Domain Manager makes a 
decision to either add or terminate some of the worker VMs. The 
Domain Manager decision is carried out by the Provisioner that 
acts by either deploying or terminating VMs and contextualizing 
them after deployment them to work as part of the right domain.  

To ensure high availability of a domain, all the major 
components of the system need to be highly available. 
Furthermore, the system depcted in Figure 1 itself is bootstrapped 
and monitored by cloudinit.d [10] which ensures repeatable 
deployment and ongoing monitoring. Note that if any of the 
system components die, it will not affect the execution of the 

domain; it will merely affect how quickly it responds to user 
policies and sensor inputs.  

Section 4.1. provides an overview of the interacting 
components. The design for high availability is descrbed in 
Section 4.2. Section 4.3 explains implemtation details.  

4.1 Components 
The Domain Manager Service allows clients to create, 

destroy, and manage domains. Each domain is associated with a 
Decision Engine that takes two inputs: (1) policy (which can be 
dynamically modified by a client) and (2) dynamically provided 
sensor information that can be both system-specific (e.g., 
information about VM lifecycle and health state) and application-
specific (e.g., size of workload for an application). The Decision 
Engine is a component of the Domain Manager that evaluates the 
policies against current sensor input and issues commands to the 
Provisioner to start or stop VM instances. The output of the 
Domain Manager is a specific directive to deploy specific 
numbers of VM instances on specific resources. The Domain 
Manager is implemented to be highly available as per the design 
described in Section 4.2.  

The Provisioner provides an adaptation layer for IaaS sites, 
and contextualizes deployed VMs. Each launch has a unique 
identifier, supplied by the client, i.e., the Domain Manager, to 
provide support for idempotency so that a specific request can be 
retried without launching an additional VM as a result (this 
functionality is mirrored by IaaS). A launch request also contains 
a VM type obtained from the Image Library and scheduling 
constraints such as instance size, the targeted IaaS provider, 
availability zones, etc. Optionally, a launch request also contains 
an attribute bag of name/value pairs that can be injected into the 
VM type to turn it into a customized VM image. The Provisioner 
is implemented to be highly available as per the design described 
in Section 4.2. 

The Image Library allows the Provisioner to dereference a 
VM type identifier into the necessary VM image compatible with 
a particular IaaS site. It also currently does the work of 
interpolating the attribute bag referred to above into a 
configuration template specific to the deployable type. The Image 
Library is implemented to be highly available.   

Sensors. To function correctly, the system relies on input 
from a variety of system-specific and application-specific sensors. 
The default sensors consist of a VM lifecycle sensor and VM 
agent. The lifecycle sensor is implemented by the Provisioner; it 
continually queries IaaS and creates notifications of any VM 
lifecycles stage change (i.e., whether it has been deployed or 
terminated). In addition the VM agent runs on every VM instance 
launched via Domain Manager, watches processes and reports 
heartbeats to the Domain Manager. The lack of heartbeats for too 
long of a period causes the Domain Manager to consider the VM 
instance unhealthy (it may in reality be healthy but suffering from 
a network partition). The VM agent is bootstrapped by the 
contextualization process [] executed on VM boot.   

4.2 Leveraging the Domain Model 
To ensure high availability of the overall system, each of the 

critical components shown in Figure 1, in particular the Domain 
Manager, Provisioner and Image Library, has to be implemented 
as a highly available component, capable of scaling up and down 
and absorbing failure. The challenge of such implementation was 
that these services do not lend themselves easily to such an 
implementation: they have a need for internal synchronization, 
critical sections, and specialized roles. In this section we will 
describe how we used the domain model to implement those 
services and at the same time give an example of how the domain 



model could be leveraged by other applications seeking to 
leverage the domain model. We assume that each service is 
implemented by a set of processes and for simplicity we also 
assume that each VM has one process, implementing a service 
function, that is started on boot.  

As per the assumptions about worker units (which can appear 
or disappear at any moment), leveraging the domain model 
requires us to decompose the function of the service into 
independent processes that can die or become unavailable at any 
moment. When they die, they need to be replaced by new service 
processes that can join the computation automatically. The 
challenge of the design is therefore the same as the challenge of 
adapting applications described in Section 3.1; we need to make 
sure that (1) any given service process can die without affecting 
the service function and (2) a service process that is newly started 
to compensate can automatically replace it.  

To implement this, we analyzed the functions of services 
used in our approach and decomposed them into smaller units of 
work, isolating critical sections. We discovered that “work units” 
fall roughly into two categories: work that can be executed by 
reactors, i.e., multiple service process working at the same time 
(e.g., processing query requests) and work that can be carried out 
only by actors, i.e., exactly one service process at a time (e.g., 
critical sections). We then devised a role relay system that 
allowed us to weave work of the service components back 
together. According to the characterization above, for each service 
we defined several roles: one role for the reactor processes, and 
one for each of the unique work units. The reactors work on units 
contained in an internal queue whereas the actors work both on 
reactor tasks and on their specialized function.  

We then implemented the service processes such that they 
can take on any role required by the service. Whenever one of the 
reactors dies, its work is taken over by the other reactors (and a 
new reactor is eventually added). Whenever one of the actors dies, 
we use the requirement that any service process can take on any 
role, stage a leader election among the reactor processes, and 
designate a new actor from amongst those processes (a new 
reactor is eventually added). In this way we ensure that critical 
service processes are quickly replaced on failure.   

4.3 Implementation 
Each component service is made up of multiple worker 

processes which share a common AMQP message queue. Each 
worker functions as a reactor, pulling messages from the queue 
and executing them. Messages are service calls specifying a 
service operation and a set of parameters. The reactor executes the 
operation and may return a result to the caller. Each operation is 
idempotent or has known retry semantics. 

All service workers are bootstrapped in the same way with 
the same configuration. Actors are determined by leader elections 
implemented via Apache ZooKeeper [9]. These elections are 
participated in by all workers and determine exactly one worker to 
be promoted to the actor role. If this elected actor later dies, or is 
partitioned away, it will lose its actor role and another worker will 
be elected within a predictable bound of time. 

This model is used for each of the component services. The 
Domain Manager has two actor roles. The Decider actor performs 
regular invocations of the decision engine for each domain. The 
Doctor monitors the heartbeats received from each deployed node 
and determines when to mark nodes as unhealthy. 

The Provisioner has a single Leader actor that performs 
queries of IaaS sites and contextualization services. It adjusts node 
lifecycle states based on the information determined by these 
queries. 

The Image Library has no actor roles; all workers serve as 
reactors only.   

5. Evaluating Time to Scale 
To evaluate how reactive our solution is, we tested the time 

to scale (TTS) of our service. Our focus was on a scenario which 
represents the worst-case scenario for our system: where 
potentially multiple clients request modifications for potentially 
multiple domains by the deployment of a VM; our TTS measured 
how quickly those aggregate requests can be satisfied. In our 
experiments this situation was approximated by using one client 
and single domain. We tested the system on EC2 micro instances. 
Initially, we create an empty domain and  reconfigure it to be 
composed of 1,850 instances. Each of these instances are 
requested independently to the IaaS provider with a VM image 
containing a pre-installed deployment of our VM agent. Each VM 
is contextualized at boot time to configure the information unique 
to this domain. 

 

 
Figure 2: Deployment time by node number 

 
Figure 2 shows that 1,850 instances can be deployed in 

around 13 minutes. It also shows the various components of the 
deployment process.  

The blue points shows when request to deploy has been 
acknowledged by Amazon. In our experiments, we found that 
issuing requests to the IaaS provider can very quickly become a 
bottleneck. To compensate for that, we deployed a multi-
Provisioner, implemented based on the domain model described 
above; the data shown in the figure was deployed using 10 
Provisioner processes. Further, we found that in addition to 
instance limits (which are explicit and specific to accounts), 
Amazon also has request limits per time unit which are not 
explicitly defined and hard to track; however, once such a limit is 
exceeded, the requests are rejected and the deployment of those 
VMs needs to be re-requested. One possible way of dealing with it 
is implementing exponential backoff. Another issue we 
discovered is that Amazon EC2 micro instances can be unreliable, 
with a small fraction of instances never reaching a successful VM 
boot. The strategy we implemented here is overprovisioning, i.e., 
requesting a certain percentage of VMs above the desired number 
(in our case it was ~10%) so that a desired number may eventually 
be obtained.  

The green points shows when Amazon deployed the VM, 
i.e., transferred the image and started it booting. While measuring 
this quality we discovered that Amazon sometimes does not report 
transition to this state in a timely fashion; sometimes the reporting 
is so far from reality in fact that it looks as if the VM has died. For 



this reason we approximated the moment when the VM reaches 
this state by the time it starts contextualization (as reported by the 
contextualization agent). The pattern visible in the green straight 
lines in the Figure 2 shows when groups of VMs reached that state 
and is an artifact of sampling frequency; more frequent sampling 
of this information would produce more leaning lines.  

Finally, the red points show when contextualization for the 
specific instances was finished. This is the point when the VM is 
ready for use, i.e., the operating system has booted and all 
additional configuration work has finished. This group of points 
has the highest variance as system boot and contextualization take 
time and phenomena such as noisy neighbour introduce a 
significant level of variability to how fast processes in the VMs 
can execute. Another potential issue is sequential context queries, 
which make some VMs wait.  

6. RELATED WORK 
Several commercial tools [11-14] provide capabilities covering 
some subset of the work described here but are either tied to 
specific commercial provider, specialized for a particular mode of 
usage not consistent with scientific requirements, or closed 
proprietary solutions that cannot be studied or adapted to 
scientific resources. Our purpose is to build a highly adaptable 
system capable of executing in a multi-cloud environment.  
The University of Victoria’s Cloud Scheduler project [15, 16] also 
demonstrated the viability of similar concepts when applied to the 
scientific community, but with emphasis on sharing resources 
provisioned in the cloud between different communities using 
batch queue systems, rather than more general need-based scaling. 
Cloud Scheduler monitors a Condor queue for new jobs, and 
provisions resources across Nimbus clouds and Amazon EC2.  
Several projects [17-21] evaluate different policies in the context 
of auto-scaling systems such as the one presented here. Our 
objectives are focused on the design and implementation of the 
system itself rather than the policies described in those works.  

7. SUMMARY 
We described a system that allows users to automatically 

outsource their computational needs to infrastructure cloud 
providers. We describe the properties of scalability and 
availability that we seek to provide in our design as well as the 
model for applications to use in order to leverage them. Our EC2 
evaluation highlights several deployment challenges at 
infrastructure cloud providers that arise when implementing a 
system of this type to work at large scales and provides insight 
into how they were overcome.  
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