Virtual Clusters for Grid Communities

Ian Foster, Tim Freeman*, Kate Keahey, Doug Scheftner, Borja Sotomayor, and Xuehai Zhang

CCGrid 2006, Singapore
tfreeman@mcs.anl.gov
• Introduction & Motivation
• Workspace Basics
• Virtual Machine Implementation
• Virtual Cluster Workspaces
 • Problem Statement
 • Workspace Deployment: Metadata/Allocation
 • Aggregate Metadata
 • Aggregate Resource Allocations
 • Experimental Results
• Analysis
• Ongoing and Future Work
Workspaces: Motivation
Required Environments

- Diverse client environment requirements
 - Library versions
 - Application versions
 - Custom applications (with possibly complex installs)
 - OS type, version, modules
Required Environments

- Diverse client environment requirements
 - Library versions
 - Application versions
 - Custom applications (with possibly complex installs)
 - OS type, version, modules

 vs.

- Provider constraints
 - Security policies
 - Administrator time
Applications Software

The following is a list of installed software by category. Click collaps the to menu view, You may view detailed information at name.

- Expand to 2nd Level | Expand All | Collapse All

- Applications - Scientific and Engineering
- Benchmark and Example Programs
- Data Analysis and Visualization
- Distributed Processing Tools
- Mathematics and Statistics
- Numerical Programs and Routines
 - ARPACK
 - ATLAS
 - ESSL
 - gmp
 - GNU Scientific Library (GSL)
 - GOTO
 - gsl
 - LAPACK
 - MKL - Math Kernel Library
 - PESSL
 - Graph and Mesh Partitioning
 - Linear Algebra
 - Miscellaneous
 - Parallel Processing Tools
 - Performance Evaluation

Operating Systems

The instructions assume you're using one of the following Linux distributions:

- Red Hat 7.x
- Red Hat 9.0
- Red Hat Enterprise Linux 3
- Fedora Core 3
- Debian Linux 3.1 (Sarge)

Installation may be successful with other Linux distributions, but they have not been tested on "binary-compatible" distributions such as Scientific Linux Fermi 3.0. x (x=3,4) and Rocks 3. OSG-ITB treating them as Red Hat Enterprise Linux 3 but no support is implied.

Requirements related documents:

- EDG Application Working Group documents: Joint list of usecases and recommandations.
- Usecases for HEP Common Application Layer (HEPCAL) document.
- EDG WP10 (biomedical) requirements (see section 6, page 42) and key improvements needed (see section 5.4, page 46).
- EDG WP9 (earth observation) deliverable on EDG testbed evaluation (see section 5.3 p. 67 and section 5.4 p. 73) and generic applications questionnaire.
- Biomedical application requirements
Isolation, Trust and Accounting

“demo”:
Isolation, Trust and Accounting

“demo”:
Isolation, Trust and Accounting

Not just applications, middleware itself can be source of bottlenecks (or security issues)
Use Cases

- Scientific Gateways
- Educational resources

Example: Flex cluster
 - Simulation code
 - Runs for weeks
 - OK to preempt
 - Pulse data analysis
 - Runs for minutes
 - Time critical
Workspaces
Workspaces

- **Sandbox:** isolates clients/providers from one another
- **Execution environment** is captured in a workspace
 - Physical workspaces
 - Virtual machine workspaces
 - Pre-deployed: dynamic accounts
- **Resource allocation**
 - Client and provider enter into an *agreement*
- **Dynamic**
 - Client deploys workspace “into” resource allocation
 - Provider allows workspace management/inspection
Workspaces

- **Sandbox**: isolates clients/providers from one another
- Execution environment captured in a workspace
- **Physical workspaces**
- **Virtual machine workspaces**
- **Pre-deployed**: dynamic accounts

- **Resource allocation**
- **Dynamic**
 - Client deploys workspace “into” resource allocation
 - Provider allows workspace management/inspection

A provisioned computing “capsule” whose internals can be managed by the client

Freeman, CCGrid06 http://workspace.globus.org
Workspaces: VM implementation
Virtual Machine Basics

- A VM can serialize all of its state (including RAM)
- A VM image is simply a collection of files
 - Disk partitions, RAM, configuration information
 - Image can be easily moved (migrated) between hypervisors of the same type
 - Image can also be saved and used for rollbacks
Virtual Machines

- **Isolation**
 - Security enforced at hypervisor layer
 - Fine grain (alterable) resource allocations
- Flexible **control** and accounting for site
- Customization: **any software** (including legacy)
- Client can have administrator privileges
- Site software requirements reduced to VMM
- **Performance** overhead is becoming acceptable
 - Currently support Xen (studies: *within 5%*)
 - Experimented with VMware in the past

Freeman, CCGrid06 http://workspace.globus.org
Virtual Cluster Workspaces
Problem Statement

- Building virtual clusters
 - Can we automate configuring cluster topologies, networking patterns, and sharing mechanisms?
 - How can we optimize virtual cluster deployment?
Problem Statement

• Building virtual clusters
 • Can we automate configuring cluster topologies, networking patterns, and sharing mechanisms?
 • How can we optimize virtual cluster deployment?

What are the logistics and cost of virtual cluster deployment?
Problem Statement

- Building virtual clusters
 - Can we automate configuring cluster topologies, networking patterns, and sharing mechanisms?
 - How can we optimize virtual cluster deployment?

What are the logistics and cost of virtual cluster deployment?

- Using virtual clusters
 - What is the overhead of running applications of different profiles on a virtual cluster?
 - When is this cost acceptable?
Problem Statement

• Building virtual clusters
 • Can we automate configuring cluster topologies, networking patterns, and sharing mechanisms?
 • How can we optimize virtual cluster deployment?

What are the logistics and cost of virtual cluster deployment?

• Using virtual clusters
 • What is the overhead of running applications of different profiles on a virtual cluster?
 • When is this cost acceptable?

Can applications use virtual cluster efficiently?
Problem Statement

• Building virtual clusters
 • Can we automate configuring cluster topologies, networking patterns, and sharing mechanisms?

• Using virtual clusters:
 • What is the overhead of running applications of different profiles on a virtual cluster?
 • When is this cost acceptable?

Can applications use virtual cluster efficiently?
Workspace Service

Remote Client

Deploy

Factory

Service state

Hypervisor

Hypervisor

Inspection and manage

VM

Freeman, CCGrid06 http://workspace.globus.org
Workspace Service

Resource Request + Metadata → Deploy → Factory

(atomic workspace)
Workspace Service

Resource Request
- Duration
- CPU percentage
- Memory
- Bandwidth
- Storage

Remote Client → Deploy → Factory

Freeman, CCGrid06 http://workspace.globus.org
Workspace Service

Metadata
- Names
- Image pointers
- Partition map
- Networking

Image File(s)

Resource Request + Metadata

Remote Client → Deploy → Factory
Virtual Clusters 'Demo'
Virtual Clusters 'Demo'
Virtual Clusters 'Demo'
Virtual Clusters 'Demo'
How should we represent clusters?

- Deployed *as a whole*

- Issues:
 - Disk per compute node would be costly
 - Image sharing
 - Network coherence
 - Configurations for service coherence
 - Efficient deployment mechanisms
How should we represent clusters?

A simple, common virtual cluster

Virtual compute nodes

Virtual head node
How should we represent clusters?

Explicitly?
How should we represent clusters?

Consolidation into sets
How should we represent clusters?

Consolidation into sets

The workspace service will differentiate sets of nodes at deploy time with network identities.
Aggregate Workspaces

- Composition of atomics
- Atomic is set of one
Aggregate Workspaces

- Composition of atomics
- Atomic is set of one
- Aggregates can contain other aggregates
- A **tree** structure
Aggregate Workspaces

Recalling the issues

- Deployed as a whole
- Network coherence is possible
- Configurations for service coherence performed by the workspace service
- Well defined and shared image parts allow for efficient deployment mechanisms
How should we map clusters to resources?

• Problem is tied to representation
• Issues:
 • Some nodes may need different allocations
 • Many nodes will need identical allocations
 • Entire allocation must be dealt with as a whole
Aggregate Resource Allocation

- Similar to aggregate workspace
- A **tree** structure
 - Does **not need to match metadata topology**
 - Heterogeneous
 - Aggregate allocation can be changed, signed, pointed to (e.g., for WS-Agreement) as *a whole*
Aggregate Resource Allocation

One atomic R.A. per atomic workspace is possible ...
One atomic R.A. per atomic workspace is possible ...

... but not required.

Heterogeneous configurations do not imply R.A. also needs to be heterogeneous.
Experiments
A Virtual OSG Cluster

- Experimented with a real world example
- OSG requirements
 - Debian Linux 3.1 (Sarge)
 - A local batch scheduler, such as Condor, PBS, LSF or SGE
 - All service and compute nodes have access to NFS
 - Grid infrastructure, typically GRAM and GridFTP
 - Submit host (not part of virtual cluster)
 - VDS: Pegasus, DAGMan, and Condor-G
A Virtual OSG Cluster

- virtual head node
 - 600MB debian+libs
 - 750MB VDT
 - 1GB OSG app/data

- virtual compute node
 - 600MB debian+libs
 - 750MB VDT
 - 1GB OSG app/data

NFS
Propagation

- Images are staged to physical cluster nodes
 - (The GigE effect)
 - Any transport method possible, "nfs copy" data:

![Bar chart showing operation times for different cluster sizes.](http://workspace.globus.org)
Customization

![Graph showing Virtua Cluster Startup Time vs Cluster Size]

<table>
<thead>
<tr>
<th>Cluster Nodes</th>
<th>Staging Image</th>
<th>Reconstructing Image</th>
<th>Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>102.740</td>
<td>0.913</td>
<td>1.340</td>
</tr>
<tr>
<td>4</td>
<td>266.336</td>
<td>0.904</td>
<td>1.345</td>
</tr>
<tr>
<td>6</td>
<td>358.834</td>
<td>0.913</td>
<td>1.353</td>
</tr>
<tr>
<td>8</td>
<td>399.840</td>
<td>0.921</td>
<td>1.362</td>
</tr>
</tbody>
</table>
Management

![Bar chart showing operation times for different clusters](http://workspace.globus.org)

- Operation process time
- Operation broadcast time
- Operation execution time

Clusters:
- 2-node Cluster
- 4-node Cluster
- 8-node Cluster
- 16-node Cluster

- Start-running
- Start-unpause
- Shutdow
- Shutdow n-pause
- Shutdow n-trash
- Shutdow n-normal

Time (sec)
Application Performance

- BLAST - Embarrassingly parallel

![Bar graph showing time in seconds for different numbers of jobs, comparing physical and virtual (1vm/node) environments.](image)
Application Performance

- FOAM: MPI but communication roughly 10%
Application Performance

- MPI study: http://people.cs.uchicago.edu/~hai/vcluster/PMB/
- More dominate communication patterns show problems such as latency issues from interrupt queueing
Analysis

- File staging can be expensive
 - Optimizations discussed earlier
- Network latency may be an issue for some HPC applications
- Aggregate workspace abstraction can handle flexible topologies and resource requirements
- Workspace service handles network and other coherence issues
Analysis

- Management overhead can be offset with longer running or shared virtual clusters
- Both management and performance expenses offset by the inherent advantages of workspaces:
 - Hosting several applications at once
 - Quality of service, isolation
 - Ease of contributing nodes to a grid
 - Flexibility
Ongoing and Future Work

- Resource management issues
 - Fine grained resource allocation
 - Complex scheduling use cases
 - WS-Agreement
 - Economic modelling
- Deploying VMs securely
 - Identity/Networking issues
- Building and deploying entire virtual grids
Thankyou

http://workspace.globus.org
 » Code
 » Documentation
 » Support (mailing lists)
 » Publications