Overcast: Running Controlled Experiments
Spanning Research and Commercial Clouds

Paul Ruth
RENCI

Kate Keahey
Argonne National Laboratory

Mert Cevik
RENCI

pruth@renci.org keahey @anl.gov mcevik @renci.org
Zhuo Zhen Cong Wang Jason Anderson
University of Chicago RENCI University of Chicago

zhenz @uchicago.edu

Abstract—The Chameleon project developed a unique experi-
mental testbed by adapting a mainstream cloud implementation
to the needs of systems research community and thereby demon-
strated that clouds can be configured to serve as a platform
for this type research. More recently, the CloudBank project
embarked on a mission of providing a conduit to commercial
clouds for the systems research community that eliminates much
of the complexity and some of the cost of using them for
research. This creates an opportunity to explore running systems
experiments in a combined setting, spanning both research and
commercial clouds. In this paper, we present an extension to
Chameleon for constructing controlled experiments across its
resources and commercial clouds accessible via CloudBank,
present a case study of an experiment running across such
combined resources, and discuss the impact of using a combined
research platform.

Index Terms—research cloud, research testbeds, multi-cloud,
networking

I. INTRODUCTION

Computational experiments comprise a large spectrum of
scientific computations, from large-scale simulations, to just-
in-time analytics, or performance studies. Different types of
such experiments place different requirements on the exper-
imental container in which they execute from the perspec-
tive of isolation (shared, multi-tenant, or completely isolated
environment), levels of access, configurability, interactivity,
and performance. Within this spectrum, computer science
systems experiments are perhaps the most challenging to
provide for as many — though not all — often require high
level of configurability and access (bare metal reconfigurability
with specialized network configuration capabilities), strong
performance isolation, interactive access, and the ability to
experiment at high performance.

To adequately address this level of challenge, traditional
testbeds that provided experimental capabilities for computer
science research have generally been configured by technolo-
gies developed in-house [1], [2]. The Chameleon testbed [3]
broke with this pattern by adapting a mainstream open source
cloud technology, OpenStack, to provide similar capabilities.
This implementation strategy carries a range of practical bene-
fits — such as familiar interfaces for users and operators, or the

cwang @renci.org

jasonanderson@uchicago.edu

opportunity to leverage contributions from a large development
community — but it also creates the potential to contribute
back, and thus influence the debate on the best cloud config-
uration to support computer science research. With commer-
cial cloud providers, such as Amazon Web Services (AWS),
increasingly willing to offer more flexibility in the form of
e.g., bare metal instances [4], and NSF’s investment in the
CloudBank [5] initiative to make commercial clouds available
to the systems research community, this debate is gaining in
importance, and could result in significant broadening of the
opportunities for computer science experimentation.

The ability to leverage commercial cloud resources could
open up significant opportunities for research. With their
greater geographic dispersion, greater diversity of resources,
and greater scales — though perhaps lesser customization to
research needs — the commercial clouds provide an interesting
offering to supplement specialized testbeds like Chameleon.
In [3] we articulate the specific extensions required to adapt
clouds to the needs of systems research; in this paper we
examine the question of what experiments could leverage both
research and commercial clouds and how such experiments
should be configured to control wide-area network perfor-
mance to enable repeatably. Specifically, we describe our ap-
proach to constructing such an experiment in the context of the
experimental workflow stages [6] of an experiment distributed
over the Chameleon testbed and AWS cloud accessed via
CloudBank.

The specific contributions of the paper are as follows:

« We present Overcast, a recipe and a set of tools, expressed
as a Jupyter notebook, that allows experimenters to
construct a class of experiments that are distributed over
research and commercial clouds.

e We describe an experiment case study using and ex-
periment that leverages Overcast to evaluate controlled
layer 2 network paths (AWS DirectConnect) spanning
resources on Chameleon, Internet2 CloudConnect, and
AWS; in particular, we show how VM instance types
affect achievable bandwidth.

o We discuss insights obtained from using research and
commercial clouds in conjunction, comparing their ca-

pabilities, in particular cost.

The rest of the paper is organized as follows. In Section 2
we describe tools and methods for constructing multi-cloud
experiments. In Section 3, we show how those tools can be
used to construct a non-trivial networking experiment. We
follow by a discussion of cloud capabilities and cost, discuss
related work, and conclude in Section 6.

II. OVERCAST: DEPLOYING AN EXPERIMENT OVER
MULTIPLE CLOUDS

Computer science experiments are typically enacted in
stages [6] beginning with experiment design, identifying suit-
able resources, allocating and configuring them, running the
experiment itself, and finally analysis. We analyze these stages
below, and compare and contrast approaches used for exper-
iment development on Chameleon and commercial resources
available via CloudBank.

Both Chameleon and CloudBank provide user access via
federated login — Chameleon via Globus Auth [7], CloudBank
via CILogon [8] — so that once logged into one system a user
can use the other without entering a password again. To use
system resources, a user needs to be associated with a project
that has active allocations. In Chameleon those allocations
consist of Service Units (SUs) which represent one hour
of wall clock time on a mainstream server. To request an
allocation, users are first certified for PI eligibility according
to infrastructure-specific policies [9], [10]. In Chameleon they
can then propose a project to be awarded an allocation. In
CloudBank, verified PIs are allocated pre-determined funds
which represent direct funding for a specific project to be spent
on one or more public clouds. Within each system, the PI or
their delegate can manage allocations to track spending and
grant membership in the project to others.

In the first step of the experimental workflow, users can
browse resources available for experimentation but their de-
scriptions differ among the systems. Chameleon resource
descriptions are fine-grained so that users can browse the
exact node configurations including processor types, cache
hierarchies, I/O device types, rack placement, etc. Commer-
cial providers typically represent their resources as “instance
types” (see e.g., [11]) and provide general information about
vCPUs/CPUs, memory, storage, network, and much less de-
tailed information about processors. Further, information about
resources in Chameleon is being kept rigorously up-to-date
— component upgrades might affect experiments sensitive to
hardware such as e.g., power management or performance
variability — the testbed is then versioned so that experimenters
can verify this information at a glance and users are offered a
suite of verification tools for sanity checks. Commercial clouds
do not track the hardware evolution and do not provide such
versioning though Chameleon’s verification tools, based on
standard Linux commands (such as e.g., “biosdecode” and
“dmidecode” to get BIOS settings) can be used to mitigate
these shortcomings to some extent.

Once selected, resources can be allocated. A notable dif-
ference between Chameleon and commercial resources is the

support for advance reservations which allow Chameleon users
to reserve availability of resources ranging from nodes, to net-
works, and IP addresses for a specific time in the future [12].
In contrast, commercial clouds rely primarily on on-demand
availability; vehicles such as “reserved instances” [13], [14]
represent a billing discount, while “capacity reservations”
based on an up-front payment that reserve capacity for specific
type of instance [15], [16] work in a similar way to allocation
on Chameleon. Another significant difference is how resources
are described: Chameleon allows users to specify resources at
different levels: from model-level descriptions (e.g., “I need
four nodes with at least 2GB per core”) to indicating a specific
node in the system, essential for experiments that require
control of hardware variability. In commercial clouds the only
way to describe resources to be allocated is the instance type;
while this provides a high-level description, it might map to
different types of resources, without the user being able to
control the mapping [3].

In both Chameleon and commercial clouds allocated re-
sources are configured by deploying disk images to create
bare metal or virtual machine instances; since many users
will want to use consistent configuration across a distributed
experiment it is useful to consider how portable those images
are. Most cloud platforms have specific requirements for the
format of a disk image (e.g., RAW or QCOW?2 [17]), its disk
layout (e.g., whole disk or partition image), or the environment
included in the image (e.g., cloud-init for injecting SSH
keys or a DHCP client configured on specific interfaces)
making images incompatible between various providers. They
all however support the same general structure (e.g., the SSH
key injection pattern via cloud-init) that can be leveraged by
tools, such as OpenStack gemu-image convert [18] and AWS
VM Import/Export [19] to convert between images; thus, to
use a Chameleon image on AWS, it has to be converted to
RAW format (if not RAW already) and then converted to AMI
[20] using AWS VM Import. This common structure and the
resulting portability options are an important consequence of
the decision to configure a research testbed as a cloud [3].
The fact that Chameleon is not only a cloud, but an OpenStack
cloud in particular, facilitates things even further: for example,
the metadata service in OpenStack supports EC2-compatible
API [21] which means that the images designed for EC2
will work with OpenStack directly. That said, some aspects
of portability may be complicated by issues higher in the
stack: for example, Chameleon includes utilities for system
verification and snapshotting on its base images that will not
be present on images imported from AWS. We provide a more
general discussion of image conversion tools, including tools
like Packer [22], in [23].

Orchestration, which allows users to deploy configurations
consisting of multiple interdependent images , networks, and
other cloud services automatically, is a related issue and pro-
vides a further demonstration of the advantages of configuring
a CS research testbed as a cloud. OpenStack Heat [24] and
CloudFormation [25], used for orchestration in Chameleon and
AWS respectively, both use declarative languages (YAML or

VS ()£ +ESH
amazon

,&8+—&.

b
webservices™ /0) 12%$+#3

~ |

4567(8'%9%

& ‘f 4567(1285+<(B+;858 1

AG2'&S+<(B+;&;8(

‘ 4567(8'#9%'S
m A - ‘

0,)(12%s+x

?24§-24C
/D$+4;8'3

2+$-24C
Ih;$+4;83

_4

TR)&+ = /0(+1

:I‘ IROFESH, .)

|N%@ AN (CTA

N
82>=Y$+
0,)(12%$+# 22<+8
= 7

|
|
|
|
! NS Q%% J

Fig. 1: Chameleon connected to AWS using Internet2 CloudConnect

JSON) to define the desired configuration template. In fact,
OpenStack Heat provides direct compatibility with the AWS
CloudFormation template format, so that many existing Cloud-
Formation templates can be launched on OpenStack [26] (see
[27] for exceptions) though not vice versa. While orchestration
templates still represent the most popular orchestration tool,
their transactional and declarative nature makes them inflexible
for experimentation. For this reason, the Chameleon project
integrated Jupyter notebooks to provide an imperative-style
alternative. A similar trend is followed by commercial clouds,
e.g., the AWS Cloud Development Kit (CDK) [28] allows
users to define a AWS infrastructure using a programming
language.

Network configuration is a critical element of any exper-
iment spanning research and commercial clouds. The tradi-
tional option is to assign domain specific public IP addresses to
all nodes and rely in the Internet for wide-area communication.
This simple approach suffers from limitations to security, per-
formance, and repeatably caused by the open and uncontrolled
public Internet. Another option is to use a virtual private
network (VPN) as a tunnel between distributed sites; the
VPN protects the architecture from common security attacks
and allows remote cloud resources to be assigned local IP
addresses and managed as if they were on-site. Both of these
options have the advantage of easy implementation, but are
limited by the inconsistent performance of the public Internet,
an important consideration for many experiments. To solve this
problem, we can utilize direct low-level network connections
between the research and public clouds, however creating
them is challenging for an independent researcher. While most
public clouds provide low-level networking services (e.g. AWS
Direct Connect [29], Azure ExpressRoute [30], or Google
Dedicated Interconnect [31]), using them is typically expensive
[32]; on the research cloud side, they can involve complicated
campus network configuration arrangements that often limit
access to this type of experimental configuration to a few a
few select scientists or campus IT staff themselves.

Since 2016, the Chameleon testbed has provided direct
connect using Internet2’s Advanced Layer 2 service (AL2S)
[33] via ExoGENI [34]. More recently, Internet2 has deployed
its CloudConnect service [35] that enables members to connect
AL2S end points, such as those used for Chameleon direct
connections, to AWS Direct Connect, Azure ExpressRoute,

and Google Dedicated Interconnect sites. Thus, to create an
experimental topology between Chameleon and commercial
cloud the first step is to create a direct connection between
Chameleon and a public cloud accessible using Internet2’s
CloudConnect. Additionally, since public cloud direct connec-
tions configure routing between the cloud and external facility
using BGP, a user also needs to deploy a BGP router on
their resources. To implement that, we developed a Jupyter
notebook that deploys fully configured BGP routers. Further,
the BGP router can, optionally, be deployed on a dedicated
OpenFlow networking switch or as software Quagga router
existing on a standard x86 compute host. The full networking
configuration is depicted in Figure 1.

III. AN EXPERIMENT CASE STUDY: DIRECTCONNECT

This section describes a multi-cloud experiment using
Chameleon and AWS resources connected using dedicated
circuits provided through Internet2’s CloudConnect service.
The aim of the experiment is to assess the bandwidth spanning
these clouds. We also explore to what extent AWS instance
types achieve targeted network performance.

A. Setup

The configuration of the experiment can be seen in Figure 1.
A BGP router was deployed on a Chameleon host connected
to two dedicated 10 Gbps tenant networks. One was an
externally connected network that was stitched to an Internet2
CloudConnect BGP router. The other was an internal network
connected to other compute nodes on Chameleon. On the
AWS side, the CloudConnect BGP router was connected to a
Virtual Private Gateway (VPG). The router in a Virtual Private
Cloud (VPC) was configured with default routes to a private
Internet Gateway and custom routes through the dedicated
Internet2 circuit to the isolated tenant network on Chameleon.
The three BGP routers cooperate to advertise routes between
user-controlled subnets hosted on Chameleon and AWS. The
infrastructure’s configuration is described in the Chameleon
tutorial on using Internet2 CloudConnect.

The Chameleon resources were located at the University
of Chicago site and the AWS resources were from the us-
east-2a region in Ohio. On Chameleon, the end hosts were
baremetal x86 (Haswell) servers with 24 compute cores, 132
GB of RAM, and 10 Gbps network. Six different AWS

